
BeatDB v3: A Framework for the Creation of
Predictive Datasets from Physiological Signals

by

Steven Anthony Rivera
S.B., Massachusetts Institute of Technology (2016)

Submitted to the Department of Electrical Engineering
and Computer Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2017

c○ Massachusetts Institute of Technology 2017. All rights reserved.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Department of Electrical Engineering

and Computer Science
May 26, 2017

Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Una-May O’Reilly

Principal Research Scientist
Thesis Supervisor

Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Erik Hemberg

Research Scientist
Thesis Supervisor

Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Christopher J. Terman

Chairman, Masters of Engineering Thesis Committee



2



BeatDB v3: A Framework for the Creation of Predictive

Datasets from Physiological Signals

by

Steven Anthony Rivera

Submitted to the Department of Electrical Engineering and Computer Science
on May 26, 2017, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Computer Science and Engineering

Abstract

BeatDB is a framework for fast processing and analysis of physiological data, such
as arterial blood pressure (ABP) or electrocardiograms (ECG). BeatDB takes such
data as input and processes it for machine learning analytics in multiple stages. It
offers both beat and onset detection, feature extraction for beats and groups of beats
over one or more signal channels and over the time domain, and an extraction step
focused on finding condition windows and aggregate features within them.

BeatDB has gone through multiple iterations, with its initial version running as a
collection of single-use MATLAB and Python scripts run on VM instances in Open-
Stack and its second version (known as PhysioMiner) acting as a cohesive and modular
cloud system on Amazon Web Services in Java. The goal of this project is primarily
to modify BeatDB to support multi-channel waveform data like EEG and accelerom-
eter data and to make the project more flexible to modification by researchers. Major
software development tasks included rewriting condition detection to find windows
in valid beat groups only, refactoring and writing new code to extract features and
prepare training data for multi-channel signals, and fully redesigning and reimple-
menting BeatDB within Python, focusing on optimization and simplicity based on
probable use cases of BeatDB. BeatDB v3 has become more accurate in the datasets
it generates, usable for both developer and non-developer users, and efficient in both
performance and design than previous iterations, achieving an average AUROC in-
crease of over 4% when comparing specific iterations.

Thesis Supervisor: Una-May O’Reilly
Title: Principal Research Scientist

Thesis Supervisor: Erik Hemberg
Title: Research Scientist

3



4



Acknowledgments

I could not have completed my thesis or work on BeatDB without the help of numerous

individuals and groups along the way.

I’d like to thank Una-May O’Reilly for her kindness and direction throughout the

development of this project. She made this process very bearable, meaningful, and

fun, and I am very grateful to have a mentor as intelligent, insightful, and personable

as her.

I’d also like to thank Erik Hemberg for preparing me for this thesis over Summer

2016 by coaching me through further development of the MLBlocks platform. He also

provided very valuable advice and direction for the redesign of BeatDB and without

him, I’m not sure that BeatDB would have come out as optimized and elegant as it

did.

I’d like to thank Alejandro Baldominos for helping me understand how PhysioMiner

worked and providing a groundwork for BeatDB v3 by developing the preprocessing

module. Without Alejandro’s help, I would have taken significantly more time to

understand how this project worked and would not have been able to accomplish as

much as I ended up doing.

I’d like to thank my mother, Claudia Rivera, grandmother, Maria Rosales, and aunt,

Cecilia Rosales, for their constant support throughout my academic career and the

sacrifices they made to ensure that I had these amazing opportunities available to

me.

I’d like to thank Gabriela Carrillo for always being there for me every step of the way

and believing in me even when I didn’t believe in myself.

I’d like to thank Juan Huertas, Jordan Smith, and Reymundo Cano for giving me

plenty of opportunities to destress and have fun when work became overwhelming.

5



I’d like to thank my band, Love and a Sandwich, for allowing me to continue pursuing

my passion for drumming throughout my undergrad and graduate years of study.

Lastly, I’d like to thank my fraternity, Theta Delta Chi, for providing me with a

nurturing, supportive, and academic environment over the entirety of my education

at MIT.

6



Contents

1 Introduction 15

1.1 Development Background . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2 Background 23

2.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1.1 Feature Engineering . . . . . . . . . . . . . . . . . . . . . . . 23

2.1.2 Prediction of Medical Events . . . . . . . . . . . . . . . . . . . 25

2.1.3 Computing Frameworks . . . . . . . . . . . . . . . . . . . . . 26

2.2 Medical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.1 Issues with Waveform Data . . . . . . . . . . . . . . . . . . . 28

2.2.2 Using the Data . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 BeatDB 33

3.1 BeatDB Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.1 Beat Object Generation . . . . . . . . . . . . . . . . . . . . . 34

3.1.2 Dataset Preparation . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Previous Implementations . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.1 BeatDB v0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.2 BeatDB v1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2.3 PhysioMiner . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3 Modifications to PhysioMiner . . . . . . . . . . . . . . . . . . . . . . 44

7



3.3.1 Comparison with BeatDB v1 . . . . . . . . . . . . . . . . . . 45

3.3.2 Valid Beat Groups (VBGs) . . . . . . . . . . . . . . . . . . . . 47

4 BeatDB v3 51

4.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1.1 Usability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.1.2 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1.3 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 New Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2.1 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2.2 Optimizations from Previous BeatDB Iterations . . . . . . . . 63

4.2.3 Additional Functionality . . . . . . . . . . . . . . . . . . . . . 65

5 Demonstration of v3 with Original ABP Data 69

5.1 Data-Based Comparison Between PhysioMiner and BeatDB v3 Versions 69

5.1.1 v3 Jumping Styles . . . . . . . . . . . . . . . . . . . . . . . . 69

5.1.2 Experiment and Results . . . . . . . . . . . . . . . . . . . . . 70

5.2 Comparison of BeatDB Iterations . . . . . . . . . . . . . . . . . . . . 74

5.2.1 BeatDB v0 and BeatDB v1 . . . . . . . . . . . . . . . . . . . 74

5.2.2 BeatDB v1 and PhysioMiner . . . . . . . . . . . . . . . . . . . 75

5.2.3 PhysioMiner and BeatDB v3 . . . . . . . . . . . . . . . . . . . 76

6 Conclusion 79

6.1 Research Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

A BeatDB v3 Interface 85

A.1 BeatDB v3 Code Structure . . . . . . . . . . . . . . . . . . . . . . . . 85

A.2 Running BeatDB v3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

A.2.1 Local Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

A.2.2 AWS Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

A.3 Implementing Multi-Channel and Multi-Sample Feature Extraction . 91

8



A.4 BeatDB v3 Pitfalls . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

A.5 BeatDB v3 Configuration File . . . . . . . . . . . . . . . . . . . . . . 96

B Algorithms 99

9



10



List of Figures

3-1 Group Window Diagram . . . . . . . . . . . . . . . . . . . . . . . . . 36

3-2 BeatDB v0 System Overview . . . . . . . . . . . . . . . . . . . . . . 37

3-3 BeatDB v1 System Overview . . . . . . . . . . . . . . . . . . . . . . 39

3-4 Valid Beat Group Diagram . . . . . . . . . . . . . . . . . . . . . . . . 43

3-5 PhysioMiner System Overview . . . . . . . . . . . . . . . . . . . . . . 50

4-1 BeatDB v3 System Overview . . . . . . . . . . . . . . . . . . . . . . 60

11



12



List of Tables

3.1 BeatDB v1 and PhysioMiner Comparison . . . . . . . . . . . . . . . . 46

3.2 PhysioMiner (original) and PhysioMiner (VBG) Comparison . . . . . 49

5.1 Experimentation Parameters . . . . . . . . . . . . . . . . . . . . . . . 71

5.2 PhysioMiner and BeatDB v3 Version Comparisons . . . . . . . . . . . 72

5.3 High Level Comparison of All BeatDB Iterations . . . . . . . . . . . . 77

A.1 EEG Data Channel Layout . . . . . . . . . . . . . . . . . . . . . . . . 92

13



14



Chapter 1

Introduction

BeatDB is a project developed and maintained by the Anyscale Learning for All group

(ALFA) in the Computer Science and Artificial Intelligence Laboratory (CSAIL) at

MIT. It is a framework that allows users to input both single and multi-channel

physiological data and analyze patterns and correlations within the data. It does

this by parsing waveforms into individual chunks (such as beats, if the waveform can

be expressed in them) while extracting additional features from each chunk in the

population/extraction stage. Afterward, BeatDB uses this information, along with

aggregated features over groups of chunks, to form a machine learning dataset in the

condition detection/aggregation stage.

Normally when researchers want to conduct an experiment using physiological data,

they need to spend time figuring out how to parse the data from the raw waveform.

Given the variability in the way that data can be stored, this process tends to be

specific to the type of data that the researchers have. Once the data has been parsed

into a more readable and malleable form, the researchers need to develop a pipeline to

process the data, usually making the pipeline very specific to the format of the parsed

data. While this tends to lead to output that is very close to what the researchers

want, the software they develop for these experiments is not typically reusable since

it is so specific to the data and the way that the researchers processed it along the

pipeline. Given the complexity of this process, it can take some amount of time and

15



use of resources to develop.

Why should researchers use BeatDB? BeatDB allows researchers and scientists to cut

down on time needed for prediction studies and data processing without sacrificing

any of the parameterization and specificity to the data possible with custom (and often

single-use and unrefined) scripts. With BeatDB v3, users are given freedom to define

their own features, validity functions, and input signal types (such as ambulatory

blood pressure (ABP)) within the framework. They are also able to easily integrate

any cloud based service within the framework, with Amazon Web Services (AWS) and

local modes supported by default. Additionally, BeatDB v3 improves upon many

issues and design concepts found in previous iterations of BeatDB, as seen in the

comparison table 5.3 and expanded upon in section 5.2.

1.1 Development Background

BeatDB has gone through multiple iterations, with its key ideas having been previ-

ously implemented in three different languages and for two different instance frame-

works (including a local mode, limited to a single worker and smaller test datasets).

BeatDB v0, mentioned in detail in Waldin’s thesis, was not a full system but a col-

lection of single-use MATLAB and Python scripts used for both beat onset detection

and the extraction of additional features from every detected beat. This iteration

served as a prototype for the population/extraction stage of the next iteration of

BeatDB.

BeatDB v1, which was a complete attempt at creating a distributed system for beat

detection and feature extraction, condition detection, and feature aggregation, was

the first attempt at making BeatDB a fully fledged application. Computation was run

on a network of OpenStack instances at CSAIL, but as this was hard-coded into the

framework, it prevented BeatDB from being accessible to many audiences. Addition-

ally, BeatDB v1’s design focus was on functionality, not general usability, rendering

customization of the platform difficult. This iteration of BeatDB did not provide

16



features that would be expected of a user-based system and was difficult to adapt

for use cases other than the ABP use case demonstrated in Dernoncourt’s thesis on

BeatDB.[7]

PhysioMiner, known as BeatDB v2, reworked the scripts that comprised BeatDB v1

into a modular and cohesive cloud based system hosted on Amazon Web Services

(AWS). The algorithms in the scripts were rewritten in Java, with Python used for

user-defined feature, condition, and aggregation functions.[10] At the time of develop-

ment, AWS and the interest in cloud technologies was relatively new. Given this, and

the need for a user-based version of BeatDB, ALFA implemented PhysioMiner on top

of AWS. The scripts for the "analytics sub-framework" were the direct inspiration for

PhysioMiner, with the four steps outlined in the hypothesis testing framework section

of the NIPS workshop paper[8] becoming the four major stages of the PhysioMiner

system.[8]

Since its development in 2014, PhysioMiner remained in use in ALFA group until De-

cember 2016 after a large processing job unveiled multiple issues with the framework

and its scalability potential, leading to numerous message timeouts, delayed process-

ing time for each message, and a significant amount of money being spent on the

computation (one specific computation over the entire MIMIC-II ABP dataset cost

over $1500 dollars). Although PhysioMiner was built with the BeatDB v1 design in

mind, its design was too over-engineered and intertwined with AWS, limiting its effec-

tiveness for large tasks. Feature creep and poor design choices caused PhysioMiner to

bloat over years of maintenance, making it more and more difficult for new researchers

to use the platform. Issues with the AWS framework, primarily those caused by mes-

sage timeouts in the queues, drastically affected computation time and cost. The

issues stemming from this large computation forced ALFA to reevaluate PhysioMiner

and compare its implementation with the BeatDB v1 design.

After evaluation, multiple objectives were created for a new iteration of BeatDB, fo-

cusing on usability, efficiency, and correctness, along with the implementation of new

17



features that allow for more complex generation of feature data from beats. This

iteration of BeatDB, called BeatDB v3, and the design and implementation of this

new iteration, are the focus of this thesis.

1.2 Objectives

There are a number of research questions for this body of work, most of them related

to the creation of BeatDB v3. These are listed and discussed below.

Does the PhysioMiner system achieve comparable correctness to the BeatDB v1 sys-

tem?

Given the differences in system design and implementation, the best way to com-

pare PhysioMiner to BeatDB v1 is to compare the results of specific computations on

both systems. The process of verifying the correctness of the PhysioMiner software

will allow us to determine how similar results of learning on generated datasets from

PhysioMiner’s implementation are to BeatDB v1’s design, and as a result, will guide

our decisions regarding the design and implementation of BeatDB v3.

How can the BeatDB system be more usable?

Though each subsequent iteration of BeatDB has attempted to make the software

easier to use for non-developers, there is still more progress to be made in simplifying

the method of control over the parameters that the user has. The process of running

the PhysioMiner software, both locally and on the cloud, can be confusing, even for

advanced users. New iterations of BeatDB should be designed with a focus on the

technical ability of expected users, but not to the point that functionality and effi-

ciency are hindered. Additionally, the source code of the software should be clear and

understandable for developers who wish to modify the source code so that the system

stays efficient over time and the inevitable maintenance it will be put through.

18



How can the BeatDB system be more efficient, in terms of performance, software de-

sign, and implementation?

PhysioMiner became bloated over multiple years of use and modification and, as a

result, started to deviate from its original design. After performing a code analysis of

PhysioMiner, we discovered multiple ingrained issues with the implementation that

have a large negative effect on computation run-time. When processing data, Phys-

ioMiner does not strive for efficiency, requiring multiple full passes over file data for

a single population task. Additionally, the process for importing feature functions is

inefficient, forcing PhysioMiner to wait for file I/O for every feature calculation and

requiring that each feature script be redownloaded from S3 for every function call

related to that feature.

Given the complexity of the PhysioMiner system and how rigid various parts of the

design are, attempting to fix PhysioMiner’s low-level implementation issues would re-

quire many resources and would ultimately lead to a weaker system, especially when

considering the amount of patching that would need to be done to add functionality

and increase efficiency in the software. Rather than fix PhysioMiner and add more

bloat to the source code, ALFA group decided that rewriting BeatDB in Python will

allow for the simplification of various parts of the system design.

Coding in Python makes it easier to add new software features to the system, and

having the hindsight of what issues arose in BeatDB v2 allows for revision of system

design mistakes made in the past. Performance-wise, coding in Python will heavily

reduce the number of subprocess calls made for the user-defined scripts necessary for

certain steps. Additionally, coding in Python will greatly speed up the system as

processes will no longer need to wait for the costly file I/O overhead for each feature

function’s results.

Does the BeatDB v3 system achieve comparable correctness to the PhysioMiner and

BeatDB v1 systems?

19



Because BeatDB is being reimplemented based on previous designs, it needs to be

reevaluated for correctness and consistency with previous iterations to ensure that

similar results are generated at each newly developed stage and that the new BeatDB

software is performing as expected. Executing correctness tests, similar to those used

to compare PhysioMiner and BeatDB v1 at the beginning of this work, will give con-

fidence in the consistency of BeatDB v3’s results with those from previous systems.

How can functionality be added to BeatDB v3 to allow for more customization, input

filtering, and the ability to process multi-dimensional waveforms?

Though this thesis has been focused on the creation of the BeatDB v3 system, its

initial objective was to add support for multi-channel features and multi-dimensional

waveforms to PhysioMiner. Discovery of the issues with PhysioMiner led to a focus

on a new iteration of BeatDB, but multi-dimensional waveform support remains a

priority in the development of BeatDB v3. The design of BeatDB v3 made it simple

to adapt the codebase for multi-dimensional waveforms and multi-channel features,

allowing users to define their own multi-dimensional signal types and multi-channel

features without much more complexity than is already required for customized single-

channel signal types and features.

BeatDB v3 also includes standalone features related to the filtering of input file sizes

and preprocessing of input data to allow the user to have greater control over their

computations. Following its design goals, BeatDB v3 is more user-friendly, only re-

quiring a configuration file to parse all arguments for all steps at once in order to

simplify the execution of the system. Lastly, users will be able to add support for

cloud frameworks of their choice, allowing BeatDB to be run on frameworks other

than AWS.

20



1.3 Organization

∙ Chapter 2 presents the architecture of the BeatDB design and its realization in

previous iterations of the system

∙ Chapter 3 discusses PhysioMiner in detail, focusing on output comparisons with

findings from Waldin’s thesis and modifications made to the system

∙ Chapter 4 provides motivation for and details the design of BeatDB v3

∙ Chapter 5 details the testing and demonstration of BeatDB v3 with original

ABP data used in previous iterations of BeatDB

∙ Chapter 6 concludes this thesis and discusses future work and goals for the

BeatDB v3 platform

∙ Appendix A contains technical information and specifics regarding the imple-

mentation and usage of BeatDB v3

∙ Appendix B contains pseudocode for specific algorithms that are critical to

BeatDB v3

21



22



Chapter 2

Background

2.1 Related Work

Despite research into similar frameworks, it seems that BeatDB is one of the few

frameworks that combines several of the specific concepts behind it, such as onset

detection, feature aggregation, and the ease of customization coupled with its user-

based design. BeatDB is a novel system primarily because of its focus on flexibility

toward multiple signal types and the combination of its provided features, such as the

coupling of beat detection along with condition detection and window aggregation.

Despite this, there is a large amount of work related to different parts of BeatDB, as

feature extraction of signal data and prediction of medical events are large fields of

interest in computing, among other components of BeatDB.

2.1.1 Feature Engineering

Feature engineering is a popular subject for research because features impact model

prediction accuracy, meaning that findings can have a large impact on future ma-

chine learning research.[19] Because many of the signal types are waveforms, using

wavelets, particularly wavelet transforms, is a common approach for feature engineer-

ing and extraction research. In fact, wavelets have been shown to outperform the fast

Fourier transform as a spectral analysis tool for detecting brain diseases.[1] A paper

23



from 1997 describes the use of artificial neural networks along with the wavelet trans-

form to classify EEG signals between normal, schizophrenic, and obsessive-compulsive

classes.[12] One group of researchers uses the stationary wavelet transform on EEG

data to"reduce artifacts from scalp EEG recordings to facilitate seizure diagnosis/de-

tection for epilepsy patients."[5] In the hardware realm, researchers have designed a

wavelet-based ECG detector for use in implantable pacemakers, noting that "wavelet-

based detection algorithms [are] generally considered as one of the most effective

algorithms."[19]

Despite this, there is still value in researching other features. An algorithm proposed

in 2013 uses local extreme values and their dependencies to extract locations of ECG

deflections, allowing the algorithm to form the beat and detect anomalies in real-

time.[29] Another group of researchers proposed a method for monitoring cerebral

autoregulation in patients that focuses on an improvement to the signal abnormality

index algorithm described in the ABP section above. By adding two simple summa-

tion features, the researchers were able to greatly improve the specificity of the signal

abnormality index for ABP data.[35]

Feature extraction can also be automated via usage of deep belief networks, as shown

in the following examples. A group of researchers used this approach to predict

emotions by "automatically [extracting] features from raw physiological data of 4

channels in an unsupervised fashion and then [building] 3 classifiers to predict the

levels of arousal, valance, and liking based on the learned features."[32] This imple-

mentation of deep belief networks is unique because it is the first attempt at using

them to predict emotions, but deep belief networks have been used frequently with

physiological data in the past, showing utility in both handwriting recognition[15]

and classifying between stages in a sleep cycle[14], among other applications.

24



2.1.2 Prediction of Medical Events

The prediction of medical events is a popular field of research as it has various appli-

cations in the real world. A medical event is one of interest that usually denotes some

sort of issue with a patient, such as an acute hypotensive episode or hemodynamic in-

stability. Researchers at MIT used symbolic analysis and clustering of cardiovascular

signals, available via ECG data, to predict "unexpected events" of interest.[28] The

researchers used morphological features to partition beats into classes that could be

represented by symbolic strings "corresponding to the sequence of labels assigned to

the underlying unit." Afterward, they searched "for significant patterns in the reduced

representation resulting from symbolization," allowing them to quickly analyze the

data for irregularity with the idea that "[symbol] variations that are unlikely to occur

purely by chance" are likely to be the most medically relevant.[28] The researchers

had success with their techniques, uncovering multiple examples of heartbeat irregu-

larities while achieving very high consistency with cardiologist opinion.

Additional research has been conducted to attempt to predict more specific cardio-

vascular events. Two researchers at the Bhoj Reddy Engineering College for Women

have developed an algorithm for detecting arrhythmia from ECG signals using ST seg-

ment and QRS detection. Once these regions have been detected, signal extraction

occurs by using a combination of discrete wavelet transformation and support vector

machine techniques to uncover ECG features and classify each beat as arrhythmic or

normal.[23] Similarly, research conducted at the Khulna University of Engineering &

Technology also used support vector machines to detect cardiac diseases such as dif-

ferent types of arrhythmia and myocardial infarction (heart attacks).[30] Researchers

at Leiden University Medical Center have analyzed the spatial QRS-T angle (SA) as

a measure of ECG concordance and determined that patients with emerging heart

failure after a heart attack are more likely to have ECG waveforms that are less

concordant.[6]

Research related to prediction is not just focused on single signal types. Another

25



group of researchers from National Taiwan University proposed a multi-modal anal-

ysis of physiological signals to determine patient functional outcomes after suffering

from a stroke.[13] This finding is particularly notable as a joint analysis of the ECG,

ABP, and PPG signal types outperforms single-modal frameworks using only one of

the signal types while yielding performance comparable to the current diagnosis scale

for stroke victims known as the National Institutes of Health Stroke Scale (NIHSS).

It is also worth noting that research related to the prediction of medical events is not

restricted to software methods. A group of doctors developed a device intended for

use in emergency rooms that can detect if a patient has a traumatic brain injury or

brain bleeding. The device, called the AHEAD 300, works by detecting EEG waves

from a reclined patient for up to 10 minutes. Afterward, the device extracts multi-

ple features and analyzes them to determine if the electrical activity in the brain is

normal or delayed or if the sides of the brain are coordinated or out of sync. Given

the portability and accuracy of the device, along with its ability to detect early head

injuries, this research shows promise for multiple fields and uses.[11]

2.1.3 Computing Frameworks

Similar to PhysioMiner, researchers at Universiti Technology Malaysia developed a

framework for cloud computing with ECG big data, motivated by the lack of big

data computing in physiological analysis. By using Hadoop along with MapReduce

to parallelize ECG analysis, the researchers hope their framework encourages others

to pursue physiological big data ventures. Their work shows a speedup of almost 30x

using MapReduce with 5 nodes and a speedup of 7x using MapReduce with 1 node

compared to not using MapReduce when analyzing ECG.[34]

Given the complexity of EEG signals, three researchers in China have developed a

framework that efficiently utilizes hybrid feature extraction, involving autoregressive

models, wavelet transforms, and sample entropy to generate complex and descriptive

features, and feature selection methods to reduce dimensionality and redundancy of

26



the feature data. By combining these methods, the researchers are able to compute

a large number of features and consequently remove redundancies and nondescriptive

features that arise, resulting in a set of features that accurately describes the data.[21]

2.2 Medical Data

The data used throughout the paper primarily comes from the Multiparameter Intel-

ligent Monitoring in Intensive Care II (MIMIC II) waveform database. MIMIC II is

a "freely available database... intended to support epidemiologic research in critical

care medicine"[22] and is currently in it’s third version.[16] It consists of two major

databases: the clinical database, which contains comprehensive and de-identified[9]

clinical information "from bedside workstations as well as hospital archives" about

Intensive Care Unit (ICU) patients, and the waveform database, which stores "con-

tinuous high-resolution physiologic waveforms and minute-by-minute numeric time

series (trends) of physiologic measurements."1 The waveform database, used for its

inclusion of physiologic waveforms, consists of 3 TB of data and contains 23,180 pa-

tient records, 17,468 of which come from adult patients.

A record is analogous to an office visit, as multiple records could belong to one patient

at different times, though there are accidental instances of a record containing mul-

tiple patients separated by a gap containing no signals. Each record contains some

subset of the following physiological waveforms.2

∙ A set of ECG (electrocardiographic) waveforms

∙ BP (continous blood pressure) waveforms include:

– ABP: arterial blood pressure (invasive, from one of the radial arteries)

– ART: arterial blood pressure (invasive, from the other radial artery)

– CPP: cerebral perfusion pressure

– CVP: central venous pressure
1https://physionet.org/mimic2/
2https://physionet.org/mimic2/mimic2_waveform_overview.shtml

27

https://physionet.org/mimic2/
https://physionet.org/mimic2/mimic2_waveform_overview.shtml


– FAP: femoral artery pressure

– ICP: intracranial pressure

– LAP: left atrial pressure

– PAP: pulmonary arterial pressure

– RAP: right atrial pressure

– UAP: uterine arterial pressure

– UVP: uterine venous pressure

∙ PLETH: uncalibrated raw output of fingertip plethysmograph

∙ RESP: uncalibrated respiration waveform, estimated from thoracic impedance

2.2.1 Issues with Waveform Data

PhysioNet describes multiple issues that exist throughout the data in the waveform

database, e.g. the database not containing both waveform and numerics records for

10.75% of all records in the database and some waveform signals not being available

for the entire duration of a record. Only one of the issues directly affects our research,

with other issues related to signal types not yet implemented within BeatDB v3.3

Gaps and patient identification

As mentioned above, some records may contain information from multiple patients

separated by a gap containing no signals. This is related to the method of extraction

used to gather the data for each waveform. Each waveform and numerics record

comes from raw data dumps that were collected from bedside monitors in intensive

care units. In some cases, monitors were not reset between patients, or monitors

were disconnected from patients for a non-trivial amount of time, causing gaps in

the waveform. Since the raw data did not contain patient identifiers, it is unclear

which gaps are indicative of a new patient being connected to the monitor or the

same patient being reconnected to the monitor. An attempt to mitigate this issue

3https://physionet.org/physiobank/database/mimic2wdb/#technical-limitations

28

https://physionet.org/physiobank/database/mimic2wdb/#technical-limitations


was made in MIMIC-II v3, which split raw data files with gaps of an hour or more

into separate records, though this may also have split patients in the same visit into

multiple records given the large amount of files that were split (48.4% of all files

contained gaps of an hour or more).4

2.2.2 Using the Data

Given that the focus of this work has been the redesign of the BeatDB system, most

of the data from previous builds of BeatDB was used for testing throughout the

development and use of BeatDB v3. Since the ABP data has been used in more

iterations of BeatDB and is more understood in our documentation, the preprocessed

ABP data from Waldin’s thesis[31] was primarily used to compare PhysioMiner and

BeatDB v3 for consistency in results.

Arterial Blood Pressure (ABP)

There is a significant amount of ABP data available in MIMIC-II, amounting to

over 240,000 hours and 2 TB of uncompressed waveform data in the form of 108

billion samples.[7] Despite this, only 6,232 records, stored as individual .edf files,

have ABP signals (26.9% of the waveform database), though not every ABP signal has

enough beats to be useful for the type of analysis that BeatDB provides. Following

the procedures from previous iterations of BeatDB, each record’s ABP waveform

data is parsed into beats using the onset detection algorithm[36] available in the

WFDB platform.[20] Each beat is marked as valid or invalid depending on its signal

abnormality index.[25] The signal abnormality index is a set of constraints that all

valid beats must satisfy. The constraints used in this project are listed below.

∙ Systolic blood pressure must be less than or equal to 300 mmHg

∙ Diastolic blood pressure must be greater than or equal to 20 mmHg

∙ Mean arterial pressure must be between 30 and 200 mmHg, inclusive

4https://physionet.org/physiobank/database/mimic2wdb/#technical-limitations

29

https://physionet.org/physiobank/database/mimic2wdb/#technical-limitations


∙ Heart rate must be between 20 and 200 bpm, inclusive

∙ Pulse pressure must be greater than or equal to 20 mmHg

∙ Number of samples in a beat must be greater than or equal to 10

∙ The difference between beat 𝑖 and beat 𝑖 − 1’s systolic and diastolic blood

pressures must both be less than or equal to 20 mmHg

∙ The difference between beat 𝑖 and beat 𝑖 − 1’s duration (in seconds) must be

less than or equal to 2
3

of a second

Additionally, we added requirements for the number of samples the beat contains,

with a user-defined upper bound determining if a beat is considered a gap beat, which

is a special type of invalid beat that flags a gap or abnormality in the signal at this

beat. Given these constraints, 77.2% of the usable ABP-containing records had at

least 80% valid beats and 60.5% had at least 90% valid beats.[7] Given this, along with

the difficulty of recording ABP without noise both physically[18] and digitally,[17] we

hope that the size of the dataset and the attempts at detecting and removing noisy

beats from consideration using the signal abnormality index overcome the inherent

noisiness of the data.

Electroencephalogram (EEG)

EEG signal data was used in the development and creation of BeatDB v3 to test

multi-channel and multi-sample feature support within the platform. The data used

for testing comes from data used to determine the effectiveness of artifact removal

methods in motion data.[26][27] As a result, the EEG data contains two EEG wave-

forms and two sets of three accelerometer signals, with each representing a different

axis in physical space. The EEG data can be found in MIT format (a data format

consisting of separate header (.hea) and data (.dat) files) coupled with .trigger files

for each data file on the PhysioNet website.5 MIT format can be converted to .edf

format, which is formally used as input by BeatDB v3, but because the data contains
5https://physionet.org/physiobank/database/motion-artifact/

30

https://physionet.org/physiobank/database/motion-artifact/


multiple signals, the .trigger files are required to properly align the signals. The mo-

tion artifact data was ideal for testing multi-channel and multi-sample features, as

the data in each channel could be aggregated over a rolling window and also allows

for simple multi-channel features to be generated easily given the layout of the data.

More information about this can be found in section 4.2.3.

Given the design issues with parsing EEG, as the signal type does not contain beats

and condition detection with EEG chunks is not fully understood, BeatDB v3 does

not formally support EEG data. Beatless data has not been tested for correctness

with the platform and is inherently different from waveforms with beats, such as ABP

or ECG. However, BeatDB v3 has been designed in such a way to allow for simple

implementation of EEG (as was done for the development of multi-channel and multi-

sample feature capability), allowing future researchers to fully understand how EEG

and other beatless signals can be interpreted by BeatDB.

31



32



Chapter 3

BeatDB

BeatDB was first designed in 2012, and though it has been reimplemented fully on at

least three separate occasions, the basic ideas and concepts behind it have remained

constant. This section will discuss a high-level view of BeatDB and attempt to outline

the theoretical system behind it without giving attention to implementation specifics.

Afterward, this section will go into detail about the previous implementations of

BeatDB and how they have contrasted with one another. Lastly, modifications to

PhysioMiner (the second iteration of a fully fledged BeatDB system) made in Fall

2016 in an attempt to better align PhysioMiner with previous iterations of BeatDB

will be discussed.

3.1 BeatDB Design

Before discussing how the most abstract BeatDB system would be split, insight should

be given on what is normally required when generating a machine learning dataset.

To start, researchers gather raw data from some sort of database. A popular one

for physiological data is MIMIC-II (see 2.2 for more details). Once the raw data

has been gathered, the researchers need to write code to convert the data into a

program-useful format. Because raw data from different sets of physiological data

almost always vary in shape and composition, these scripts tend to be designed for

single-use. Once the data has been parsed, additional features may be extracted from

33



each row in the resultant chunks, or groups of sample values. Once this has been

done, a lag/lead rolling window algorithm is performed over the resultant chunks in

order to generate the predictive machine learning dataset. Since the amount of work

required to prepare data for machine learning is non-trivial, researchers could benefit

from having a software system that automates this process for them in a distributed

way.

To adapt the problem to BeatDB, a clear division in the main dataset generation

algorithm needs to be found. In theory, BeatDB can most simply be split into two

major modules. Overall, its goal is to parse any physiological data into chunks of

some sort, such as beats, and then use this information to form a dataset that can be

analyzed with machine learning techniques. As such, BeatDB can be thought of as a

simple system that focuses on flexibility of input and ease of use by running its highly

generalized modules sequentially, with the data from the first module being used in

the second module to form the final output of the system in a pipeline fashion.

3.1.1 Beat Object Generation

In the first module of BeatDB, the physiological data is parsed into beats or chunks,

depending on the nature of the signal type. If the signal type can be parsed into

beats that can be detected using a beat onset detection algorithm, then it is trivial

to split the raw waveform into smaller chunks (just split the waveform into the beats

themselves). Some signal types, such as EEG or accelerometer data, do not have

groups of signals that can be parsed into beats. Instead, researchers define their own

metrics for splitting the raw waveform, such as splitting the raw waveform into evenly

sized chunks, making a new chunk after noticing some signal value, or determining

where chunks lie by detecting some sort of trend. Regardless of how this is done,

BeatDB should be flexible enough to adapt to this requirement.

During this process, BeatDB should also be able to extract features from the chunks

it identifies in the raw waveform. For maximum flexibility, BeatDB should allow

34



for custom features to be imported and it should allow the user to select between

existing features to compute using each the sample values of each chunk. Given these

requirements, the end result of the Beat Object Generation module should be a set

of chunks, representing the original dataset exactly, each with some set of customized

computed feature values based on the sample values contained within the chunk.

3.1.2 Dataset Preparation

In the second module of BeatDB, the chunks generated from the previous module

are used to create a prediction dataset for machine learning analysis. As with the

previous module, this module has two goals. First, the module needs to determine

which consecutive groups of the chunks are representative of some sort of detectable

condition based on arguments given from the user. The user determines the condition

to detect and defines the procedure for determining the condition. Additionally,

the user gives values for 𝑙𝑒𝑎𝑑, 𝑙𝑎𝑔, and 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛_𝑤𝑖𝑛𝑑𝑜𝑤_𝑙𝑒𝑛𝑔𝑡ℎ. These values

outline the length of a rolling window that will be applied over the raw waveform

(comprised of consecutive chunks at this point). This rolling window consists of three

smaller windows: the predictor window with 𝑙𝑎𝑔 duration, the lead window with 𝑙𝑒𝑎𝑑

duration, and the condition window with 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛_𝑤𝑖𝑛𝑑𝑜𝑤_𝑙𝑒𝑛𝑔𝑡ℎ duration, all

with durations defined in terms of seconds. The chunks in the condition window are

given to the condition detecting procedure to determine if that group is representative

of the condition or not. A visual representation of this rolling window, referred to as

the group window, is shown in Figure 3-1.

The second goal of this module requires that aggregate features are computed using

a prediction window that occurs some time before the condition window in order

to ensure that we have adequate prediction data related to the condition window.

These aggregate features are computed from the features of the chunks found in the

lag (predictor) window. The combination of these goals allows this module to create

a machine learning dataset, with both classifications from condition windows and

aggregation features from predictor (lag) window subwindows present in each group

35



Figure 3-1: This figure shows a group window imposed over a waveform, with the
group window consisting of a lag (predictor) window, lead window, and condition

window. This is the structure of the rolling window that is first applied to the very
beginning of the waveform and rolled over to the end of the waveform.

window recorded by the module. At this point, the user can use this dataset to

perform machine learning analysis on the results and attempt to find some sort of

meaningful correlation between the prediction data and the detected conditions.

3.2 Previous Implementations

As mentioned, BeatDB has been realized in multiple implementations in the past few

years. In this section, details regarding these past implementations and their specifics

and shortcomings will be discussed.

3.2.1 BeatDB v0

Though this iteration of BeatDB was not referred to as BeatDB, it essentially out-

lines an implementation of the first module described above and served as a critical

building block to the development of the BeatDB system. The Beat Feature Database

described in section six of Waldin’s Master’s thesis[31] was developed to parse ABP

data into beats with features. Waldin stored the raw waveforms of each of the seg-

ments found in MIMIC-II and then, after preprocessing the data to remove noise,

performed onset detection on them to find each beat. During this process, Waldin

marked beats as invalid or valid but also checked if beats were abnormally long in

duration (greater than 6 seconds) and marked them as 𝑔𝑎𝑝𝑠. In his words, "a gap

36



indicates a disturbance in the signal that is significant enough that the data prior

and posterior to the gap should not be considered as belonging to the same contigu-

ous segment."[31] In addition to finding the validity of each beat, Waldin computed

various beat features for each beat, completely fulfilling all requirements of the Beat

Object Generation module described in section 3.1. A very simple diagram of the

system overview of BeatDB v0 can be seen in figure 3-2.

Even though this iteration did not include any attempts at detecting conditions within

groups of beats or aggregating features and was not designed with flexibility to in-

put in mind, it laid the groundwork for future iterations of BeatDB by introducing

the idea of a beat database that takes physiological data and outputs beats with

additional features. Waldin used this database for further analysis of blood pressure

data, using the data in a variety of experiments that combined various classification

methods and parameters to determine that more advanced features and classification

methods must be used to predict blood pressure for a general patient.[31]

Figure 3-2: This figure shows a very simple diagram of the system overview of
BeatDB v0. It only contains the population/extraction module, which takes in raw

waveform ABP data and outputs Beats data, with each beat object containing
extracted features.

3.2.2 BeatDB v1

The first true iteration of BeatDB was primarily developed by Franck Dernoncourt

and will be referred to as BeatDB v1 throughout this thesis. A more fleshed out ver-

sion of the Beat Feature Database that Waldin proposed, BeatDB v1’s main objec-

37



tives were multi-level parameterization (primarily for flexibility of experimentation),

lossless storage, and scalability.[7] It expanded upon the beat detection and feature

extraction concepts presented in BeatDB v0 by adding a joint condition detection

and feature aggregation module, introducing the rolling window condition detection

algorithm used throughout future iterations of BeatDB (mentioned above in 3.1.2).

For a diagram of the BeatDB v1 system overview, see figure 3-3.

Given the first main objective of BeatDB listed above, this module was developed

with flexibility to parameters in mind, allowing the user to specify the event to detect,

which beat features to compute, how to aggregate features, and the machine learn-

ing algorithms and evaluation metrics used to analyze the resultant dataset. Despite

this, setting these parameters was not particularly user friendly, requiring users to

have familiarity with the codebase to modify these arguments. As for its other main

objectives, BeatDB v1 initially employed a master/worker architecture introduced by

Waldin called DCAP (A Distributed Computation Architecture in Python)1 and later

moved to a multi-worker architecture in which workers were synchronized by a com-

mon result database in order to limit code overhead for connections between instances.

To store lossless data, NFS servers were used so that workers could easily access data

files in a shared way. Given the inexpensive nature of using OpenStack and NFS

servers at CSAIL, BeatDB v1 was able to achieve scalability on large MIMIC-II ABP

datasets.

Interestingly, BeatDB v1 had the most feature functionality of all iterations, ex-

panding beyond condition detection and feature aggregation by directly computing

a user-specified evaluation metric using a machine learning algorithm of the users

choice. No future iteration has been concerned with providing this sort of analysis to

users, focusing instead on the generation of a dataset that is immediately ready for

machine learning analysis. Additionally, BeatDB v1 incorporated alternative complex

methods of condition detection, using wavelets and a Gaussian process for parameter

optimization on the same ABP problem to show the effectiveness of their implementa-
1http://byterial.blogspot.com/2013/02/dcap-distributed-computation.html

38

http://byterial.blogspot.com/2013/02/dcap-distributed-computation.html


tions within the system. It is likely that these methods were not propagated forward

to future iterations of BeatDB because of their much lower average AUROC scores

compared to the rolling window condition detection algorithm and the complexity of

implementation that each method required.

Figure 3-3: This figure shows a simple diagram of the two modules that comprise
BeatDB v1. BeatDB v1 added onto BeatDB v0 by adding a condition

detection/aggregation stage that outputs a predictive dataset of lag subwindows.

3.2.3 PhysioMiner

PhysioMiner is comprised of four major steps, outlined in detail throughout Gopal’s

Master’s thesis and in documentation maintained by ALFA[3]. In each step, the

PhysioMiner master instance creates or alters an existing DynamoDB table by adding

messages to an SQS queue related to the step which are processed by worker instances

who record and write results to the tables. Each step that occurs later in PhysioMiner

is dependent on the tables generated by the steps before it. For a diagram and further

explanation of the system architecture of PhysioMiner, refer to 3-5 at the end of this

chapter.

What motivations were there for building PhysioMiner if a working version of BeatDB

v1 existed? PhysioMiner is, more explicitly, the Amazon Web Services (AWS) system

architecture used to run BeatDB, albeit a customized version of BeatDB that differs

from v1 and is written in Java. As such, PhysioMiner is frequently referred to as an

iteration of BeatDB rather than a framework that runs a BeatDB instance. Phys-

ioMiner’s intent was not to overtake BeatDB but to provide a way to run the software

on a modular and new (at the time) cloud service. As development progressed, Phys-

ioMiner became an iteration of BeatDB in its own right, given that BeatDB was

rewritten entirely within PhysioMiner. In this sense, PhysioMiner’s main motivation

39



was to expand BeatDB beyond the CSAIL servers and into a new cloud architecture

with the hopes that the system could readily be used by a broader range of researchers

than previously allowable with BeatDB v1.

Additionally, BeatDB v1 was not as user oriented as desired for a system meant to

be used by numerous researchers on different projects. PhysioMiner allowed for users

to customize each parameter as they called and initialized the script, giving the user

more control over the system than BeatDB v1. Users were also allowed to create

their own feature, aggregation, and filter functions in Python, which would be used

by PhysioMiner for the stages it would run.

Rather than being broken up into two stages, as the conceptual BeatDB and BeatDB

v1 did, PhysioMiner breaks BeatDB into four stages, consisting of population, feature

extraction, condition detection, and feature aggregation. These steps can be seen as

submodules of the two stages present in the other BeatDB iterations and are briefly

discussed below.

Population

Population is the first step of PhysioMiner. It reads raw waveforms in the data folder

of the root S3 bucket and populates a 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 table. The 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 table relates

the raw waveform files to 𝑠𝑒𝑔𝑚𝑒𝑛𝑡_𝑖𝑑𝑠. Population also runs over each waveform and

performs an onset detection algorithm to distinguish between the individual beats.

Finally, PhysioMiner runs through the beats, extracting features from them that are

specific to the signal type of the data while assigning a validity to them based on

certain conditions.

A beat has one of three possible values in its 𝑣𝑎𝑙𝑖𝑑 field: 0 for invalid, 1 for valid,

and 2 for gap (in the original PhysioMiner implementation, valid was a boolean

and had no way of distinguishing between gap beats without directly checking the

duration. See 3.3 for more details.). When considering ABP data, beats must pass

validity checks related to having systolic pressure, duration, and other feature values

40



between acceptable ranges (this refers to an implementation of the signal abnormality

index mentioned in 2.2.2). If the beat has a duration of greater than 6 seconds,

which is impossible for a human heartbeat and implies some sort of loss of signal or

disconnection from the sensors, then the beat is assigned a validity of 2.[31] Once all

beats have been analyzed for validity, they are written to a 𝑏𝑒𝑎𝑡𝑠 table in DynamoDB.

Feature Extraction

The next step is feature extraction, which iterates over a specific 𝑏𝑒𝑎𝑡𝑠 table and

adds additional features, specified by the user, to each beat based on analysis of each

waveform. Features to be added must be specified in the command that runs feature

extraction. Each feature must have a corresponding Python script containing its

logic placed in a subfolder for the data type (ABP, ECG, etc) inside of the 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠/

folder in the S3 bucket. When feature extraction is run, it will add values for the new

features not yet present in each individual row in the 𝑏𝑒𝑎𝑡𝑠 table and overwrite values

for features with the same name that have been recalculated (if the script has not

changed, it will overwrite with the same information assuming the raw input data is

the same).

This step is run in conjunction with population by default but can be rerun afterward

to add more features to the individual beats in the specified 𝑏𝑒𝑎𝑡𝑠 table. Population

and feature extraction can be seen as two submodules of the Beat Object Generation

module in the conceptual view of BeatDB discussed in 3.1.

Condition Detection

The third step in PhysioMiner is condition detection. This step is described as it exists

in the latest update to PhysioMiner, and differs from its original implementation (see

3.3). When a beat is checked for validity, it may be flagged as a gap beat, described

in the population step above. If a beat is a gap beat, any beats after and including

this gap beat may not be part of a contiguous segment as the duration of the gap beat

indicates a loss of signal. In order to only consider valid groups of the patient’s raw

41



waveform, PhysioMiner must preprocess the waveform and find where gap beats occur

and where these gap sections end. A valid beat group is a section of the patient’s raw

waveform starting with a valid beat and containing no gap beats. This guarantees

that valid beat groups are contiguous sections of the waveform and are not noise.

After generating the valid beat groups (VBGs), a sliding window algorithm is run over

each of them. The sliding window is initially formed at the start of the VBG, with

PhysioMiner calculating the sliding window’s end beat by considering the duration

of lag, lead, and the condition window. If the end beat is beyond the bounds of

the VBG, the algorithm continues to the next VBG. If our sliding window fits in

the VBG, the condition is determined from the condition window using a condition

script. If the condition window matches the condition, the window is saved and the

sliding window is moved forward by an entire sliding window length so that it starts

at the end beat of the current sliding window. Otherwise, the sliding window is only

moved ahead by 𝑙𝑎𝑔 seconds.

For example, let’s assume a sample waveform has 800 seconds of data and no gaps

and the lag and lead durations are both 10 s while condition window length is 60 s.

Assume that the first group window (the first step of our rolling window algorithm)

starts at the very first beat, and each beat is 1 second long. Detecting the condition

in the condition window would make the next rolling window start at the 81st second

(jumping over the condition window entirely), while not detecting the condition would

make the next rolling window start at the 11th second (moving ahead by lag seconds).

If gaps had existed in this waveform, the algorithm would simply check if a gap beat

existed in the group window’s range every time it had a new start index, and if there

was a gap beat in its range, the algorithm would start the group window at the first

valid beat after this gap beat. A simplified visual representation of this can be seen

in figure 3-4.

Once the end of the last VBG is reached, a user-defined filter script may run on

the discovered windows, allowing the user to only see a specific number of windows

42



Figure 3-4: This image shows how VBGs are found and used in condition detection.
1 shows a waveform being split into valid beat groups and invalid/gap sections (a
section that starts with a gap beat). 2 shows the first VBG being processed by

condition detection, which starts by placing the sliding window at the start of the
VBG and then running the sliding window algorithm on the VBG until the window
reaches the end of the VBG. Afterward, the sliding window algorithm starts at the
start of the next VBG and is run until it reaches the end of the VBG, as shown in 3.

By only detecting conditions over VBG’s, we ensure that the generated dataset
contains data containing the least noise and possibly save on computation time by

not needlessly generating data over invalid regions.

matching some sort of user-defined criteria. Finally, the resultant windows are written

to the 𝑤𝑖𝑛𝑑𝑜𝑤𝑠 table (with no filter script, all windows are written). Each sliding

window is represented by a row in the 𝑤𝑖𝑛𝑑𝑜𝑤𝑠 table, with each row containing

information such as the condition classification, beat id’s of the start and end beats,

lead, lag, and condition window length. (In the original PhysioMiner implementation,

each sliding window in the 𝑤𝑖𝑛𝑑𝑜𝑤𝑠 table did not contain lag or lead since each entry

was only representative of the condition window. See 3.3.2 for more details.)

43



Feature Aggregation

The last step of BeatDB is feature aggregation. Feature aggregation reads from the

𝑤𝑖𝑛𝑑𝑜𝑤𝑠 table generated in the previous step with the aim of aggregating features

over each predictor (lag) window. Users specify how many subwindows the lag win-

dow will be divided into and which user-defined aggregator functions to run over

specified features from the extraction step. New, aggregate features for each subwin-

dow from the lag window are generated, with each group window existing as a row

in the 𝑤𝑖𝑛𝑑𝑜𝑤𝑠 table. The number of new features added to each row is found by

multiplying the number of aggregator functions by the number of features, and the

number of new rows is found by multiplying the number of rows in the windows col-

umn by the number of subwindows. For example, if the user picked two subwindows

and supplied four aggregators and two features, the new dataset would have twice

as many rows as the windows table and each row would have 8 more features (one

aggregate feature is created for each feature and aggregator pair).

After generating the lag window aggregate features, a row with the old and new fea-

tures for each subwindow is added to the 𝑤𝑖𝑛𝑑𝑜𝑤𝑠_𝑙𝑒𝑎𝑑_𝑥_𝑙𝑎𝑔_𝑦_𝑠𝑢𝑏𝑤𝑖𝑛𝑑𝑜𝑤𝑠_𝑧

table, where 𝑥 is lead in seconds, 𝑦 is lag in seconds, and 𝑧 is number of subwindows.

Since each window and subwindow still has the same classification as generated in

condition detection for it’s parent group window, this table is useful for learning,

as one can use the aggregate features to try to predict the label. Using additional

processing scripts, the user can generate a .csv file from the table and port it into

any machine learning framework for analysis, keeping in mind the columns that need

to be removed or ignored for processing, such as those containing id values and other

string-based information.

3.3 Modifications to PhysioMiner

After completing the implementation of PhysioMiner, the system was tested using

ECG data. However, PhysioMiner did not adequately test the accuracy of generated

44



datasets when using the ABP data from the BeatDB v1 experiments. The first major

task of this thesis work required searching for the NFS server used with BeatDB v1 for

code or experiment results from Dernoncourt’s work. In this process, inconsistencies

between BeatDB v1 and PhysioMiner were found and investigated, leading to further

implementation on the PhysioMiner platform. This section details the comparison

between PhysioMiner and BeatDB v1, leading to the discovery of the cause of the

inconsistencies, and a high-level overview of the process of modifying PhysioMiner,

giving an analysis of its results.

3.3.1 Comparison with BeatDB v1

Despite the searches through the lab’s NFS server, code for onset detection, the

wavelet feature implementation, and other internal processes were discovered, but a

complete working copy of BeatDB v1 was not found. However, a significant amount of

resultant aggregated datasets created by BeatDB v1 were found, allowing for compar-

ison between the output of PhysioMiner and BeatDB v1. Given the major differences

between the design and frameworks used for computation, the BeatDB v1 output

data looks different than the PhysioMiner output data, but there are valid explana-

tions for most of the differences.

Given the cost of repopulation, both monetarily and temporally, we are comparing

two resultant datasets that already existed (in the case of the PhysioMiner implemen-

tation, the large scale 𝑏𝑒𝑎𝑡𝑠 and 𝑤𝑖𝑛𝑑𝑜𝑤𝑠 tables already existed, with the aggregation

table being created to match the parameters of the BeatDB v1 result file). On the left

is the result of learning on the data from the NFS server that Dernoncourt used to

develop BeatDB initially. The right side contains the results of learning on the output

of the original implementation of PhysioMiner. These tests are meant to compare the

effectiveness of learning algorithms on resultant datasets from the different iterations

of BeatDB.

Upon inspection, there are a few noticeable differences. The biggest difference is that

45



Version: BeatDB v1 PhysioMiner
Source: NFS://beatdb/ABP-AHE_

Classification_datasets/
map60_segments_lag10
lead60_trends.csv

dynamodb://beatdb_abp_
windows_lead_60_lag_10_
subwindows_10

Segment (rows): 629595 81760
Number of in-
valid rows
(segments with
errors):

0 1187

Features: 73 73
Data (non-id)
features:

70 65

Number of AHE
positive rows:

3275 2337

Percent of AHE
positive rows:

0.52% 2.86%

10 trial AUROC
mean:

0.8894 0.7962

10 trial AUROC
std:

0.0027 0.0043

Table 3.1: Comparison of resultant datasets from BeatDB v1 and PhysioMiner.

PhysioMiner achieves an AUROC score 9% lower than BeatDB v1, which indicates

a problem somewhere in the workflow. BeatDB v1 appears to generate significantly

more segments than PhysioMiner, which may indicate that it was designed less ef-

ficiently in some way. This difference in design makes sense, seeing as PhysioMiner

runs on AWS, which requires money to use, while BeatDB v1 used OpenStack and

NFS servers already available at CSAIL for its distributed tasks. The large number

of segments generated by BeatDB v1 may indicate that Dernoncourt did not skip

over the condition window for the next rolling window entirely if the condition was

detected in the condition detection algorithm. This may have an effect on AUROC

and the number of AHE positive rows. (In the initial programming for the imple-

mentation of valid beat groups in PhysioMiner, discussed in 3.3.2, a similar mistake

resulted in about 10 times more rows in the final dataset, making the process very

costly and inefficient but providing giving evidence that this may have resulted in the

large output table from BeatDB v1.)

46



Additionally, five data features are missing in PhysioMiner. The missing features

are the five aggregation values for duration, since duration is calculated internally by

BeatDB v1 and the aggregation step in PhysioMiner requires that the features are

user-defined, meaning that PhysioMiner would not aggregate duration. PhysioMiner

stores 5 extra variables (𝑏𝑒𝑎𝑡_𝑠𝑡𝑎𝑟𝑡_𝑖𝑑, 𝑏𝑒𝑎𝑡_𝑒𝑛𝑑_𝑖𝑑, 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛_𝑤𝑖𝑛𝑑𝑜𝑤_𝑙𝑒𝑛𝑔𝑡ℎ,

𝑠𝑢𝑏𝑤𝑖𝑛𝑑𝑜𝑤_𝑖𝑛𝑑𝑒𝑥, and 𝑤𝑖𝑛𝑑𝑜𝑤_𝑙𝑒𝑛𝑔𝑡ℎ), which results in both datasets having 73

features with only 68 of the features (the 65 data features and 3 ID values) in common

between the datasets.

These results prompted a direct comparison of the code and processes used in BeatDB

v1 and PhysioMiner. Waldin’s thesis gave significant background to the window find-

ing algorithm, and analysis of it showed that PhysioMiner was lacking gap beat

detection, meaning that some windows contained invalid sections of the waveform

and should not have been included in resultant datasets. This could be one reason

for the large difference in AUROC scores and is further explored in the next section.

3.3.2 Valid Beat Groups (VBGs)

In the port from BeatDB v1 to PhysioMiner, the condition detection step was changed,

modifying the way windows are found over a waveform. The change is subtle, but

seemingly has a large effect on the AUROC scores of the resultant dataset.

In BeatDB v1, condition detection runs the sliding window algorithm over contigu-

ous segments of the waveform only. Contiguous segments of the waveform were easily

identifiable because the beats database had a different schema, which created the

𝑣𝑎𝑙𝑖𝑑 field as an integer instead of a boolean. If 𝑣𝑎𝑙𝑖𝑑 had a value of 2, it meant

that the beat was a gap beat, indicating that it had a duration of 6 seconds or more.

Gap beats are likely the result of an error, either in the device or with the patient

(removal of the detectors, etc. See 2.2.1 for more information) and were discarded

from consideration. This allowed for the condition detection step to be more efficient

and made the data more meaningful as it was guaranteed to come from signal rather

47



than noise. Additionally, the sliding window in condition detection had a size of

𝑙𝑒𝑎𝑑 + 𝑙𝑎𝑔 + 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛_𝑤𝑖𝑛𝑑𝑜𝑤_𝑙𝑒𝑛𝑔𝑡ℎ seconds, essentially bundling the condition

window with the predictor (lag) window in the database. (This is a group window

based on the definition and diagram in 3.1.2) If this group window concept is carried

forward to future iterations of BeatDB, it could be used to do condition detection

and feature aggregation simultaneously, cutting down on overall file processing time.

In the Java implementation, the 𝑣𝑎𝑙𝑖𝑑 field in the 𝑏𝑒𝑎𝑡𝑠 tables is a boolean, losing the

capability to distinguish between gap beats and normal beats. Instead, the condition

detection step starts at or near the beginning of the file, depending on the value of

the 𝑔𝑎𝑝 argument, which can be used to start from a constant offset from the start of

the waveform. The algorithm does not manually check beat duration for gap beats,

so the windows formed come from the entire waveform, not just the contiguous beat

sections. This could be the reason for the difference in AUROC score and database

sizes between the resultant datasets from the Python and Java implementations of

BeatDB, as the Java implementation used for testing includes invalid windows.

To test this idea, an instance of PhysioMiner’s implementation from August 2016 and

an updated version with valid beat groups implemented were compared. The result

of linear regression on the aggregated windows tables from each version is shown in

table 3.2.

One result from a learning trial for each version of BeatDB is provided to show sam-

ple output of the learning process used, but keep in mind that the valid beat group

version did not always outperform the original version and the difference was not

always as great as 2% in AUROC. However, the average over ten trials shows a clear

increase by 1% in the VBG version, which may indicate that VBGs are necessary for

BeatDB’s overall accuracy. The standard deviation for the VBG version is smaller

by a factor of 20, meaning that it is more consistent with its AUROC score than the

version that does not look for gap beats.

48



Version: PhysioMiner (original) PhysioMiner (VBGs)
Sample files pro-
cessed:

3000000.edf, 3000002.edf, 3000105.edf, 3900017.edf

Rows: 150 160
Number of AHE
positive rows:

30 20

Percent of AHE
positive rows:

20.00% 12.50%

10 trial AUROC
mean:

0.9699 0.9797

10 trial AUROC
std:

0.0197 0.0096

Table 3.2: Comparison of original PhysioMiner implementation and PhysioMiner
with valid beat groups (VBGs). This data was generated using a lead of 60 s, a lag
of 10 s, and 10 subwindows, meaning that the predictor (lag) window was split into

10 sections for feature aggregation.

Why were VBGs left out of PhysioMiner when it is based off from BeatDB v1?

Perhaps the 𝑔𝑎𝑝 argument was confused with the gap beat concept during the im-

plementation of the Java port and the detail of the 𝑣𝑎𝑙𝑖𝑑 field for each beat ob-

ject having three possible values was lost, preventing PhysioMiner from iterating

over valid sections of the waveform while skipping invalid ones. Because of this,

lead and lag were not required as arguments for condition detection, which resulted

in the sliding window containing only the condition window with a duration of

𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛_𝑤𝑖𝑛𝑑𝑜𝑤_𝑙𝑒𝑛𝑔𝑡ℎ seconds.

Not requiring lead and lag as arguments for condition detection forced the software

to aggregate features by looking backwards in the raw waveform to find prediction

windows. Instead, the software should have given the indices of the prediction win-

dow by coupling it with the condition window in the windows database. This could

be the cause of significant inefficiencies. In future iterations of BeatDB, this must be

considered, as the new requirement of lead and lag in condition detection could allow

it to be performed simultaneously with feature aggregation while only considering

contiguous sections of the waveform.

49



Figure 3-5: This figure, created by Alejandro Baldominos[4], shows the general
PhysioMiner system architecture for both master and worker instances. Master
instances start by creating worker EC2 instances and then gather items from
DynamoDB in order to determine what needs to be processed. Once this has

completed, the master instance uploads messages describing each task to the SQS
queue. Worker instances spawn by receiving the PhysioMiner JAR file from S3

along with a message from the SQS queue, which prompts the workers to pull the
specified items from DynamoDB and process them. Once this has completed, the
workers write to the resultant DynamoDB table and continue to fetch and process

messages until the queue is empty.

50



Chapter 4

BeatDB v3

BeatDB v3 is a new iteration of the BeatDB system, fully written in Python and

designed with efficiency (correctness and performance), more complex feature ex-

traction, and high code coverage as focuses of the project. It consists of a popula-

tion/extraction stage and a condition detection/aggregation stage. Additionally, a

standalone preprocessing stage, developed primary by Alejandro Baldominos, and a

standalone file size reader were developed for use with BeatDB v3. This chapter will

focus on motivations for creating a third iteration of BeatDB and then present a sys-

tem overview along with a discussion regarding new features and optimizations made.

Technical specifics for BeatDB v3, including how to run the software, implementation

details, and other technical information, can be found in appendix A.

4.1 Motivations

Primary motivations for developing a new iteration of BeatDB v3 were initially related

to extending the functionality of PhysioMiner. In order to add more flexibility to the

system, developers wanted to add the capability to extract multi-channel and multi-

sample/temporal features (where a chunk is a specific slice of the raw waveform (a

beat would be considered a subset of a chunk)) and make it simpler for users to

define their own signal types. However, given the large codebase and the amount of

architectural complexity written within PhysioMiner, adding features to the system

51



would prove to be a lengthy and unclear process, made more difficult by the slow

iteration time and the need for maintaining existing efficiency within the system.

On top of this, PhysioMiner does not result in datasets with AUROC scores similar

to those generated from the original version of BeatDB. This issue was discovered

through experimentation between the two versions (discussed in section 3.3.1) and

was found to have a connection to the condition detection step (discussed in section

3.3.2). As a result of these issues, along with AWS issues that led to large efficiency

issues and costs (see section 4.1.2), primary motivations for developing a new iteration

of BeatDB became usability for both developers and non-technical users, efficiency,

and correctness. These motivations will be discussed in terms of the shortcomings of

the PhysioMiner system.

4.1.1 Usability

Although PhysioMiner was the first iteration of BeatDB intended for use by re-

searchers that are not necessarily developers, some of the design decisions made in

the final system are not particularly user-friendly. PhysioMiner did not use a config-

uration file and required that the user pass in all arguments via the command line.

This gets particularly messy for complicated stages. For example, if a user wanted

to fully process a set of raw data files (that is, detect beats from each raw data file

and extract features from them, and then perform the sliding window algorithm to

detect condition and aggregate features), the user would need to run the following

commands with the required arguments listed. The commands tell PhysioMiner to

run population/extraction, condition detection, and aggregation, respectively.

java −j a r main . j a r populate −−bucket beatdb −−t ab l e beatdb −n

→˓ 1 −−f e a t u r e s abp_features . txt −−f o l d e r data −−s i gna l−

→˓ type ABP −− i n i t i a l i z e −t ab l e s −−key−name s a r i v e r a −−iam−

→˓ p r o f i l e sar ivera_beatdb

52



java −j a r main . j a r f i nd −−bucket beatdb −−t ab l e beatdb −n 1

→˓ −−l ead 60 −−l ag 30 −−cond i t i on s abp_condit ions . txt −−

→˓ i n i t i a l i z e −t ab l e s −−key−name s a r i v e r a −−iam−p r o f i l e

→˓ sar ivera_beatdb

java −j a r main . j a r aggregate −−bucket beatdb −−t ab l e

→˓ beatdb_sar_local −n 1 −−l ead 60 −−l ag 30 −−windows 10

→˓ −−aggrega to r s agg r ega to r s . txt −−f e a t u r e s c r e s t , d i a s t o l e

→˓ , ku r t o s i s ,map , mean , pressure_area , pulse , rms , skewness , std

→˓ , s y s t o l e , systo l e_durat ion , d ia s to l e_durat i on −−

→˓ i n i t i a l i z e −t ab l e s −−key−name s a r i v e r a −−iam−p r o f i l e

→˓ sar ivera_beatdb

By the end of the last command, the user would have generated a table in DynamoDB

with subwindows, each with aggregated features, that can be used for machine learn-

ing. Given the large number of required inputs, using a configuration file for BeatDB

v3 will significantly cut down on the complexity of these commands, especially since

PhysioMiner is not resilient to unrecognized inputs being passed in and will quickly fail

if that situation occurs. With BeatDB v3, the command to run the entire BeatDB

system on a set of raw data files could be (and is) as simple as 𝑝𝑦𝑡ℎ𝑜𝑛 𝑚𝑎𝑖𝑛.𝑝𝑦

𝑐𝑟𝑒𝑎𝑡𝑒_𝑑𝑎𝑡𝑎𝑠𝑒𝑡 with an optional −−𝑐𝑜𝑛𝑓𝑖𝑔 flag that can be supplied if the config file

has a different name than 𝑐𝑜𝑛𝑓𝑖𝑔.𝑦𝑎𝑚𝑙. Additionally, if unused arguments are listed

in the configuration file, BeatDB v3 does not fail to execute, as PhysioMiner would

when it is initialized with unfamiliar arguments.

Though PhysioMiner is not prohibitively complicated to run, it still requires some

working knowledge of AWS and coding fundamentals. In order to practically use

the system, the user has to have some idea of how AWS works (particularly S3,

SQS, DynamoDB, and EC2) since PhysioMiner is highly dependent on these services.

Small issues are likely to occur with usage that require the user to troubleshoot with

knowledge of the AWS framework. Examples of issues that may arise include the SQS

53



queue having leftover messages from previous, incomplete runs and propagating them

forward, EC2 instances failing during computations from silent memory issues, and

the need to launch new workers with the correct boot script during computations.

The user is not able to get past this issue by running PhysioMiner locally, as its AWS

functionality is interweaved throughout the design of the system. In order to run

PhysioMiner locally, the user needs to spoof the existence of AWS services locally

using the fake-s3[24], elasticmq[33], and DynamoDB Local[2] packages. Once these

services are running and the BeatDB ’bucket’ folder has been synced with fake-s3,

the user can run PhysioMiner locally, limiting the amount of possible issues that can

arise but also severely limiting the throughput of the system.

From the lens of a developer, PhysioMiner did not have high usability (code clarity)

for researchers who wish to modify the Java source code. Significant chunks of the

code existed as copy-pasted sections of other code, making it hard to modify the

system and unclear what would happen when the system was modified. The design

of PhysioMiner was particularly hard to understand, with each stage utilizing four

classes for its internal structure. The master class would call the runner class to

prepare each service, send messages, and initialize workers, with each process having

its own set of logic and requirements. Given the lack of proper abstraction within the

system, it became monolithic and was not easy to modify or adapt in a clean way.

This usability issue was not necessarily true of the features and aggregation scripts,

which were designed for simplicity and modularity in Python, but this design decision

led to other issues (see the next subsection for details).

4.1.2 Efficiency

One of the major motivations for reimplementing BeatDB is efficiency. Though ef-

ficiency was a design goal for PhysioMiner, it was particularly inefficient in the way

that it handled certain core algorithms, especially at scale. For example, in the pop-

ulation module, PhysioMiner takes in raw data, performs onset detection on the data

54



to parse the waveform into beats, and then validates and extracts features from these

beats. This process could be completed in one loop over the beats array, but the

implementation of population within PhysioMiner performs many more loops than

necessary over the sample values of the beats and the resultant beats array. This

problem of looping over large lists of values too frequently can be found in various

stages of the PhysioMiner system and contributes to its overall inefficiency.

Additionally, the process of extracting features from beats is very inefficient due to

its internal processes. As mentioned in the previous section, feature and aggregator

functions were written in Python to make it easier for the user to define their own

beat and aggregation features. This, combined with the way PhysioMiner gathers

these functions, leads to a significant slowdown in processing. PhysioMiner would

download all feature extraction Python scripts, perform them one by one on a beat

by using subprocessing functionality in Java to call the Python scripts, and would

read results by reading a set of temporary files in order to gather the values of the fea-

ture extraction functions. Subprocessing and file I/O always require a certain amount

of overhead when utilized in a system, since the process running the code needs to

suspend and hand control over to the subprocess, which then needs to write to file

once it completes and hand control back to the original process. Because PhysioMiner

needed to call Python scripts for its features and had to read each individual feature

result from file, a lot of overhead was added to the population stage for each beat that

was parsed. On top of this, each worker would delete the feature extraction scripts

after processing a beat, forcing them to redownload the scripts before processing each

new beat.

These issues, when taken together, caused significant inefficiencies throughout the

system, as similar problems to these can be found in each step. In fact, the issue

of downloading scripts and deleting them once a single beat has been processed is

also found in the aggregation stage with the aggregation scripts. In order to fix these

issues, future iterations of BeatDB need to pay close attention to the algorithms used

and verify that they loop over large datasets as few times as necessary. Additionally,

55



future iterations of BeatDB should consider the efficiency issues that come with the

addition or design of software features, as seen with the subprocessing slowdowns that

the addition of Python scripts brought to PhysioMiner. To most easily mitigate this,

BeatDB v3 will be written entirely in Python, so that no subprocessing or intermedi-

ary file I/O calls are necessary besides calls to the WFDB software package required

for beat onset detection of specific signal types.

Algorithmic inefficiency is not the only efficiency issue that plagued PhysioMiner.

Given the complexity of developing a distributed cloud system, PhysioMiner was

bound to experience various framework-based inefficiencies when performing at scale.

Issues with the AWS framework that led to overall inefficiency of the system will be

discussed below.

AWS Issues

The algorithmic inefficiencies of PhysioMiner directly affected its performance when

running the software in a distributed fashion over the cloud. Consider how the run-

time and memory usage of PhysioMiner grow as the raw data file size grows, especially

considering the algorithmic inefficiencies described above. Worker instances, which

are inherently limited in size in order to keep resource costs low, are susceptible to

runtime errors and memory issues as the program runs for longer amounts of time.

When a worker instance runs into a memory error and halts its computation, there

is no simple way for the master instance to receive knowledge of this and act ac-

cordingly. The user usually needs to manually inspect worker instances for logs to

indicate their failure since these dead workers appear to be processing messages and

are not easily discernible from functional worker instances. This inevitably leads to

slowdowns within the framework, as less workers are available to work on messages

as time goes on and lost workers may not be quickly noticed or replaced.

On top of this, some raw data files are too large for workers to process, leading to

worker failure when these files are processed. In most cases, when the worker instance

56



stops working, the message the worker was processing will be sent back to the queue

for reevaluation some time after the worker dies. This is intended to prevent files from

being lost from consideration when workers fail while processing them, but leads to a

big problem. If a worker dies because it received a message that points to a data file

that is too large to process, the message will be readded to the queue, leaving another

worker to grab it. This leads to a chain of broken workers, which amplifies slowdowns

within the framework and wastes resources. This issue is further compounded when

considering that worker instances must have at least as much memory as the maxi-

mum file size described in the message queue.

These issues, combined with the algorithmic and design-based inefficiencies of Phys-

ioMiner, greatly affect the efficiency of PhysioMiner, which causes costs to skyrocket

on large experiments. Future iterations of BeatDB need to focus on integrating within

AWS in an efficient way and need to prevent the issues that arose with PhysioMiner

related to silently dead workers and large files that were impossible to process on a

single worker instance.

4.1.3 Correctness

As previously mentioned, a bug was found in the condition detection stage of Phys-

ioMiner related to the detection of gaps and valid beat groups. Fixing this bug by

considering gap sections and not considering windows containing them led to an in-

crease in the 10-trial AUROC score for PhysioMiner (see section 3.3.2). Near the end

of the development of BeatDB v3, a bug was found in the aggregation stage related

to the generation of predictor (lag) window subwindows. This bug directly affected

the calculation of aggregate features and led to an incorrect overlap of data.

When PhysioMiner is running feature aggregation, it reads the group windows from

a 𝑤𝑖𝑛𝑑𝑜𝑤𝑠 table in DynamoDB and performs aggregation on the predictor (lag) win-

dows found within the group windows. Before performing aggregation, the stage may

split the predictor window into a number of subwindows, based on user input. This

57



concept is relatively straightforward, though the bounds of this design were never con-

sidered. For example, some aggregation features, such as those that perform linear

regression on the value of beat features in a subwindow, such as the 𝑡𝑟𝑒𝑛𝑑 aggregate

feature, may depend on each subwindow containing at least two beats. If a sub-

window only contains one beat, feature functions like 𝑡𝑟𝑒𝑛𝑑 would fail to generate a

meaningful result, as linear regression cannot give a result for a list of one value.

Given this, it makes sense that there should be a requirement that lag is some fac-

tor greater than the number of subwindows generated from the predictor window.

However, PhysioMiner does not enforce this, and does not fail as expected when the

number of subwindows is 10 and the lag is 10 s in duration (allowing for between

11 and 15 beats, on average), meaning that a 𝑡𝑟𝑒𝑛𝑑 value is still generated for each

subwindow. Further investigation into this phenomenon revealed the existence of a

bug in the process that generated the subwindow bounds. Because of an off by one

error, the subwindows always contained an overlapping beat, meaning that, when

the lag window is not sufficiently large enough to split into the requested number of

subwindows, all subwindows generated will contain more beats than they should. In

our example above, each subwindow contained at least two beats when they should

have contained at least one beat. This is why the 𝑡𝑟𝑒𝑛𝑑 aggregate feature did not

fail to generate a result in all cases when running PhysioMiner experiments where lag

and subwindows were not compatible values.

This bug means that PhysioMiner tends to double count beats in subwindows, which

would likely have a large effect on the aggregate features generated in subwindows

that are supposed to have a small number of beats. This likely weakened the possible

AUROC scores that PhysioMiner could achieve, and as such, should be avoided when

developing the next iteration of BeatDB.

58



4.2 New Architecture

BeatDB v3 has a different architecture than previous iterations of BeatDB, but the

base algorithms behind the stages of BeatDB remain the same. BeatDB v3’s design

is most closely related to the conceptual BeatDB design discussed in section 3.1,

containing two stages that perform similarly to the Beat Object Generation and

Dataset Preparation modules.

4.2.1 System Overview

As mentioned, BeatDB is split into two stages: population/extraction and condition

detection/aggregation. These stages can be run independently or sequentially via

the joint stage titled 𝑐𝑟𝑒𝑎𝑡𝑒_𝑑𝑎𝑡𝑎𝑠𝑒𝑡. When running the modules independently, the

population/extraction stage creates an intermediate .npy file containing the array of

chunks generated from the stage and stores it in a path specified in the configuration

file. This allows the condition detection/aggregation stage to be run directly after by

reading the .npy files placed in this directory from the population/extraction stage,

generating a windows and subwindows .csv file ready for machine learning analysis.

These stages can be run immediately sequentially from within the code by running

BeatDB v3 with the create dataset stage, which will only produce the windows and

subwindows .csv files and is equivalent to running population/extraction followed by

condition detection/aggregation. The independent method of running the stages may

prove to have useful applications in cloud applications regarding BeatDB v3, but for

all intents and purposes, it is faster and simpler to run the joint create dataset stage

on raw data.

Assuming the user has set the proper arguments in the configuration file, the stages

are performed as follows. For more detailed specifics about how these stages are run,

see appendix A. For a simplified diagram of the BeatDB v3 system overview, see

figure 4-1.

59



Figure 4-1: Simplified version of the data pipeline in BeatDB v3. Input data can be
fed either directly into BeatDB v3 or into the standalone modules, with

preprocessed output going to BeatDB v3. Population/extraction is always run first
within BeatDB v3 and is followed by condition detection/aggregation. These stages
may be run immediately sequentially or in parts, with the population/extraction

module generating an intermediate file for later analysis with condition
detection/aggregation. Lastly, the user may use learning algorithms on the resultant
dataset from BeatDB v3’s condition detection/aggregation stage to generate metrics

about the data.

Population/Extraction

The first stage of BeatDB v3 is almost exactly the same as the population and feature

extraction stages from PhysioMiner that were capable of being run sequentially and

separately. BeatDB v3 processes the raw .edf data files found in the input directory

one by one, referring to the 𝑒𝑑𝑓_𝑡𝑜_𝑐ℎ𝑢𝑛𝑘𝑠 method of the signal type class repre-

senting the signal type of the raw data to determine how to parse the raw data into

chunks. For ABP, this consists of parsing the signals and pulses from the WFDB

software for the raw data file. Once these have been found, the ABP signal type class

will use these arrays to extract beats from the raw waveform. As it extracts a beat, it

immediately calculates the features for that beat using the user-defined feature func-

tions, allowing BeatDB v3 to only ever need to loop through the beats array when

it is created. Users can compute rolling window features when performing this step

over the waveform, and if the signal type contains multiple channels of data, can also

define multi-channel features to be calculated for each chunk. Once all chunks have

60



been extracted, the chunks array is either exported to an .npy file in the intermediate

file path if the population/extraction stage is being run independently, or the chunks

array is passed to the next module directly if the population/extraction stage was

run via the joint create dataset stage.

Condition Detection/Aggregation

The second stage of BeatDB v3 combines the condition detection and feature aggre-

gation stages of PhysioMiner into one stage. The reason these stages were combined

relates to the modifications made to PhysioMiner, documented in section 3.3.2. Since

the modifications required that the lead and lag arguments be given as input to the

condition detection stage along with the aggregation stage, and since the stages could

be flattened into one loop as feature extraction was in the population/extraction stage

discussed above, it made sense for efficiency and design purposes to combine these

stages.

As with the previous stage, this stage processes chunks representing raw data files

one at a time. Depending on how this stage is run, it either reads from the in-

termediate data path where the .npy files from population/extraction are stored in

order to generate the chunks when run independently or starts with the chunks ar-

ray already defined in the joint create dataset stage. Once the chunks array for a

raw file has been created or passed in, the stage passes it to the 𝑑𝑒𝑡𝑒𝑐𝑡_𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠

function which performs a rolling window algorithm most closely related to the one

used in BeatDB v1 over the chunks array. To recap, this rolling window algorithm

works by starting at the beginning of the raw waveform and attempting to define

bounds for the group window starting at this point, defining the 𝑙𝑒𝑎𝑑_𝑠𝑡𝑎𝑟𝑡_𝑖𝑛𝑑𝑒𝑥,

𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛_𝑤𝑖𝑛𝑑𝑜𝑤_𝑠𝑡𝑎𝑟𝑡_𝑖𝑛𝑑𝑒𝑥, and 𝑔𝑟𝑜𝑢𝑝_𝑤𝑖𝑛𝑑𝑜𝑤_𝑒𝑛𝑑_𝑖𝑛𝑑𝑒𝑥 from indices of

chunks in the chunks array. If there are gap beats in the group window, the start

index of the next group window is the first valid beat after the gap beat. If there are

no gap beats in the group window, then the algorithm tries to classify the condition

window (from 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛_𝑤𝑖𝑛𝑑𝑜𝑤_𝑠𝑡𝑎𝑟𝑡_𝑖𝑛𝑑𝑒𝑥 to 𝑔𝑟𝑜𝑢𝑝_𝑤𝑖𝑛𝑑𝑜𝑤_𝑒𝑛𝑑_𝑖𝑛𝑑𝑒𝑥) us-

61



ing the condition function.

Immediately after, the algorithm splits the predictor (lag) window into a number of

even subwindows specified by the user (the subwindows are not always able to contain

the same number of chunks, but are made as balanced as possible). Once the predic-

tor window has been split into even subwindows, the algorithm aggregates features

over each subwindow. After this, the algorithm creates an object to represent the

group window, including the condition classification and the subwindows, which each

contain their aggregate features in their own object abstraction, and moves on to the

next group window position, which depends on the classification value.

If the classification is True, meaning that the condition window for the group window

was determined to have the condition, then the rolling window algorithm places the

start index of the next group window immediately after the end index of the positive

condition window and continues. If the classification is False, the algorithm moves

the rolling window ahead by 10%. This style of jumping (the amount of the waveform

that the rolling window slides ahead by) is called ’v2 style’ because this is the type of

movement that was used in PhysioMiner. For completeness, ’v1 style’ jumping, where

the group window start index moves ahead by the length of the lag window, was also

tested. A discussion regarding the differences between these styles of jumping can be

found in section 5.1.1.

This rolling window algorithm is run until the end of the chunks array is reached,

usually because the next group window would pass the end of the chunks array. Once

all group windows have been analyzed, they are written to file. For simplicity of

testing, all subwindows are also written to a separate file, containing all aggregated

features and classification values as well (included for testing purposes). This pro-

cess is done for each chunks array .npy file in the intermediate file path or for every

raw data file passed in, depending on if this stage is run independently or in the

joint create dataset stage, respectively. Pseudocode for the rolling window algorithm

(called 𝑑𝑒𝑡𝑒𝑐𝑡_𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 in the software) can be found in algorithm 1 in appendix

62



B. Examples of the different jump styles can be seen in the same pseudocode in lines

14 and 15.

4.2.2 Optimizations from Previous BeatDB Iterations

As mentioned in the motivations section, one of BeatDB v3’s major focuses was on

efficiency. As such, developers sought to make the algorithms behind BeatDB v3 run

as quickly as possible. One way to do this involved fully designing the algorithms

before implementing them. By trying to limit the number of loops over data struc-

tures, get as much data as possible in one iteration, and keep the codebase small and

necessary, we were able to make the algorithms run in as minimal time as possible

without applying more internal and low-level optimizations. For example, in Phys-

ioMiner, a frequently used utility function to determine the first beat that occurs after

a specified amount of seconds was incredibly inefficient because it always started from

the start of the chunks array, meaning that the runtime of the utility function got

worse and worse as the number of chunks in the waveform got larger. By recognizing

these issues and the unclear way in which they can propagate, we can design around

them and truly limit the number of loops required to compute specific stages. Now,

both stages only need to perform one loop over the input data, with condition detec-

tion/aggregation containing some smaller loops internally in every iteration to deduce

beat indices based on time durations.

We also made sure to not make redundant steps, such as downloading scripts and

deleting them after applying them on a single set of samples or rederiving constant

values like feature name to function dictionaries within loops. For example, the popu-

lation/extraction algorithm only needs to do one loop over the beats array to perform

feature extraction once the beats have been parsed from the raw waveform and does

so with feature functions that are included within modules to the system. Compare

this with PhysioMiner, which, for each chunk, has to download the feature scripts

individually, run them via a subprocess, parse the results using file I/O libraries, and

then delete the feature scripts. By writing the procedures so that they try to do

63



all required data generation at once and create all frequently used constants before

iteration, the algorithms were able to minimize the number of calculations necessary

for processed files.

In the same vein of implementation based optimizations, BeatDB v3 utilizes a higher-

order function paradigm for its feature extraction and feature aggregation compo-

nents. This is done by creating a 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 class in the code that contains static

methods representing the feature and aggregation functions used by BeatDB. When

the users arguments from the configuration file are parsed, the system will generate

a dictionary mapping feature or aggregator names to their respective functions in

the Features instance the raw data and signal type indicated in the configuration file

relate to. These functions are then used by the stages for efficient extraction and

aggregation, as the functions are already in memory and all consist of constant time

calculations. The higher-order function paradigm used by BeatDB v3 allows for effi-

ciency in the extraction and aggregation procedures and keeps the design clean and

easy-to-understand for users hoping to modify the source code.

BeatDB also sought to achieve optimizations directly related to its design and the

structure of the code base. The process of running each of the stages of PhysioMiner

contained abstract classes that dealt with the master/worker split, which is likely a

result of its implementation being very intertwined with the AWS architecture. Since

BeatDB v3 was initially developed as a local application, its structure is more direct

and less abstract but is still flexible enough to allow for multiple cloud frameworks

to be supported without needing to write more code than necessary to support the

framework’s API. Another benefit of this development approach relates to the effi-

ciency of the local version of BeatDB v3. The local implementation of PhysioMiner

could have been more efficient if it did not require the spoofing of AWS services, since

the code could utilize the power of the computer running the process without needing

to worry about the overhead of communication between services. Developing BeatDB

for local use first gives us the guarantee that, even if a cloud based framework were

ported in and failed for whatever reason, the local version of BeatDB will still perform

64



well, allowing users to completely and quickly ditch the cloud framework instead of

relying on fake services for the code to work locally.

By reducing the number of stages of BeatDB from four (in PhysioMiner) to two, we

were able to cut down on some of the overhead that was created by needing to run

the stages manually. Additionally, the development of the joint create dataset stage

allows for users to parse raw data directly into the final output of BeatDB v3, which

is the most efficient way to use BeatDB v3 since the joint stage does not need to

write to file between the population/extraction and condition detection/aggregation

computations. The smaller number of stages could potentially cause issues when pro-

cessing larger data files, since workers would need to perform what was two stages

worth of computations in PhysioMiner in one stage. This may limit the size of files

that are able to be computed by BeatDB v3, but it is likely that the computations

between stages of PhysioMiner and BeatDB v3 are similar in resource usage, since

the input data and algorithmically generated data is the same between systems.

4.2.3 Additional Functionality

BeatDB v3 was not designed as a subset, but a superset, of PhysioMiner, offering new

ways of calculating features from multi-channel data and standalone utility modules

for use before execution of BeatDB v3 on raw data. This section will go into more

detail about each of these new features.

Multi-Sample and Multi-Channel Feature Extraction

PhysioMiner requires the usage of ABP or ECG waveform data (written in .edf for-

mat). In order to allow for the most flexibility related to signal types, BeatDB v3

has a clear and concise schema for signal type classes that allows for many kinds

of signal types to be represented, whether they contain beats or chunks or contain

multiple or single channel data. It also allows for researchers compute multi-channel

and multi-sample features from specific types of physiological data.

65



Multi-channel features are features that are computed using multiple channels of

signal data. This is dependent on the signal type that is being analyzed. Some sig-

nals, such as ABP, are single-channel, and as a result, cannot generate multi-channel

features unless the signal is included with others and the signals are synced. Multi-

sample (temporal) features are features that are generated by a rolling window algo-

rithm over a number of consecutive beats. multi-sample features are not generated

until at least some number of chunks, set by the 𝑟𝑜𝑙𝑙𝑖𝑛𝑔_𝑤𝑖𝑛𝑑𝑜𝑤_𝑙𝑒𝑛𝑔𝑡ℎ argument

in the population/extraction stage section of the configuration file, have been seen

previously in the population/extraction stage while processing of a specific raw data

file. Because of this, multi-sample features can technically be generated from any

signal type as long as the signal type generates enough chunks from the raw data

file. However, multi-sample features will only have a value for the chunks that occur

after the 𝑟𝑜𝑙𝑙𝑖𝑛𝑔_𝑤𝑖𝑛𝑑𝑜𝑤_𝑙𝑒𝑛𝑔𝑡ℎth chunk in the chunks detected in population/ex-

traction, since the rolling window algorithm requires that at least this many chunks

have been seen previously to generate a multi-sample feature.

Allowing for this type of feature generation has potential to strengthen the accuracy

of the datasets generated by BeatDB and allows researchers to test the correlation

of previously untestable features with classification of specific conditions. Specific

information related to the implementation of multi-channel and multi-sample beats

in BeatDB v3 can be found in section A.3.

Standalone Utility Modules

To prevent the issues encountered with PhysioMiner and AWS, a filter for BeatDB

was implemented that allows users to exclude raw data files that are outside of a given

file size range from consideration when running the system. This should help prevent

issues with ’killer’ messages discussed in the previous section. These are shown in the

system diagram for BeatDB v3 in figure 4-1. Though this feature was not integrated

within BeatDB, users can still use it to analyze their data before processing it with

BeatDB v3, potentially saving them from issues caused by tiny and massive file sizes

66



and limited worker instance memory.

Additionally, a standalone preprocessing module for BeatDB was developed, allow-

ing for users to quickly preprocess their raw data with user-defined functions before

running it through BeatDB. This module, developed by Alejandro Baldominos, is

usually used to remove noise from the signal before processing the data, but could be

used for other kinds of user-defined preprocessing as well. This preprocessing module

was the first module for BeatDB v3 developed, with later modules making use of the

AWS software patterns Baldominos introduced in preprocessing.

67



68



Chapter 5

Demonstration of v3 with Original

ABP Data

5.1 Data-Based Comparison Between PhysioMiner

and BeatDB v3 Versions

In order to demonstrate the effectiveness of the BeatDB v3 system, average run-times

were recorded and 100-trial AUROC scores were computed from the final output of

two versions of PhysioMiner and two versions of BeatDB v3. The two versions of

PhysioMiner are the original implementation of PhysioMiner and the modified version

of PhysioMiner that includes VBGs. For more discussion about these versions of

PhysioMiner, see section 3.3.2. This chapter will discuss the difference between these

versions of BeatDB v3 and the experiment, attempting to draw conclusions from the

results.

5.1.1 v3 Jumping Styles

In all iterations of BeatDB, the rolling window algorithm in the the condition detec-

tion stage places the start of the next rolling window right after the end of the current

one if the current condition window is classified as having the condition. However,

when the condition window is classified as not having the condition, the amount of

69



distance the rolling window moves by is dependent on the iteration of BeatDB that

is being run. (For a programmatic example of these styles of jumping, see algorithm

1 in appendix B on lines 14 and 15.)

In BeatDB v1, the condition detection stage moves the rolling window forward by the

duration of the lag window, meaning that the start index of the next rolling window is

the start index of the lead window in the current rolling window. Since lag values are

usually small, this process results in a significant amount of windows being produced.

This was not an issue for BeatDB v1, which was run on free OpenStack servers in

CSAIL.

For PhysioMiner, the condition detection stage moves the rolling window forward by

10% of the entire 𝑐ℎ𝑢𝑛𝑘𝑠 array for the file being processed. This style of jumping is

more efficient, but has the possibility of ignoring large sections of chunks if the file

or individual chunk size is very large. Because this design decision was made for effi-

ciency, its effect on BeatDB’s resultant AUROC scores was unknown. For efficiency,

BeatDB v3 will use v2 style jumping, but the source code can easily be modified to

use v1 style jumping (see algorithm 1 in appendix B) which makes it easy to test

the effect of jump style on resultant AUROC scores. To understand how the chosen

style of jumping truly affects BeatDB and how PhysioMiner and BeatDB v3 com-

pare, we will analyze AUROC scores and run-time of the original implementation of

PhysioMiner, the modified VBG implementation of PhysioMiner, BeatDB v3 with v2

style jumps, and BeatDB v3 with v1 style jumps.

5.1.2 Experiment and Results

In order to properly test these iterations, a common dataset with common arguments

needed to be determined. In the process of picking a sample set of arguments, the

bug discussed in section 4.1.3 was discovered. In order to get around this issue, a lead

of 60 s, lag of 30 s (instead of 10 s as used in section 3.3 when comparing PhysioMiner

iterations, see 4.1.3 for details regarding why picking a lag duration similar in num-

70



ber to the number of subwindows is not a good way to represent the data), and 10

subwindows was picked, since each subwindow would be expected to have at least 3

beats most of the time. This allows the aggregated features to be more representative

of the condition and prevents aggregate features such as 𝑡𝑟𝑒𝑛𝑑 from having invalid

values, as would occur if some subwindows contained only one beat. In layman’s

terms, these parameters mean that we are attempting to detect a condition found in

a 30 minute window 1 minute after a point 𝑡 using 30 seconds of data before point 𝑡.

For a table of inputs and parameters, see table 5.1.

Sample files processed: {3000000, 3000002, 3000105, 3900017}.edf
Lead: 60 s
Lag: 30 s
Number of subwindows: 10
Condition
window length:

1800 s

Condition: AHE (acute hypotensive episode)
Condition definition: a window has AHE if 90% of beats in the window

have a mean arterial pressure (MAP) feature value
less than 60 (our threshold)

Chunk-level features: Crest, diastole, diastole duration, kurtosis, mean
arterial pressure (MAP), mean, pressure area,
pulse, root mean square, skew, standard deviation,
systole, and systole duration

Aggregate features: Kurtosis, mean, skew, standard deviation, and
trend

Table 5.1: This table shows common parameters used for experimentation in this
chapter, which compares versions of PhysioMiner and BeatDB v3. Chunk-level and

aggregate features indicate which functions should be performed on either the
samples that comprise a chunk or specific feature values for chunks in the same

group window, respectively.

The same sample files used to compare PhysioMiner iterations in section 3.3.2 were

used for this experiment. As was done with the results from section 3.3, metrics such

as AUROC scores in the table are generated by taking the average metric score over

100 trials using logistic regression with a test/train split of 0.6. All average run-times

are recorded over five trials of the described process being run. Additionally, because

it was not possible to run all stages immediately sequentially in PhysioMiner, the

71



’All Stages Avg. Run-time’ for PhysioMiner versions is a sum of the averages of the

run-times above it and does not have a standard deviation value. Other special cells

include run-times for population and extraction, which are the same between versions

of the same iteration since version differences are only in the condition detection pro-

cedures, and run-times for condition detection and aggregation for BeatDB v3, since

these stages are not separable in BeatDB v3. The results can be seen in table 5.2.

Version: PhysioMiner
original

PhysioMiner
VBGs

BeatDB v3
v2 style jumps

BeatDB v3
v1 style jumps

Number
of subwindows
(rows):

150 160 250 7670

Number of
AHE positive
rows:

30 20 20 20

Percent of AHE
positive rows:

20.00% 12.50% 8% 0.261%

Population
& Extraction
Avg. Run-time

6841 ± 460 s (114 min) 94.24 ± 0.66 s

Condition
Detection Avg.
Run-time

70.70 ± 9.66 s 242.9 ± 12.7 s 9.041 ± 0.12 s
(stages joint
in v3)

133.1 ± 2 s
(stages joint
in v3)

Aggregation
Avg. Run-time

2854 ± 103 s
(47.57 min)

2741 ± 151 s
(45.68 min)

All Stages Avg.
Run-time

9765 s
(162.75 min)

9825 s
(163.75 min)

99.92 ± 0.9 s 225.4 ± 4.5 s

All Stages Avg.
Run-time Scale

1.0x
(baseline)

0.9939x 97.73x 43.32x

Accuracy
mean:

91.2 ± 3.38% 94.4 ± 2.78% 97.5 ± 1.54% 99.6 ± 0.08%

F1 mean: 94.8 ± 2.06% 96.7 ± 1.63% 98.7 ± 0.85% 99.8 ± 0.04%
AUROC mean: 94.8 ± 2.55% 97.3 ± 2.11% 98.5 ± 1.33% 99.1 ± 0.51%

Table 5.2: Comparison of the original PhysioMiner implementation, the modified
VBG version of PhysioMiner, BeatDB v3 with v2 style jumps in condition detection,

and BeatDB v3 with v1 style jumps in condition detection, all run locally on an
xl.12core OpenStack instance with a lead of 60 s, a lag of 30 s, and 10 subwindows.
Average run-times were recorded over five trials. Accuracy, F1, and AUROC metrics

are taken over 100 trials of logistic regression with a test-train split of 0.6.

72



The results from the experiment show promise for BeatDB v3. Both versions of

BeatDB v3 attain higher AUROC scores over both versions of PhysioMiner. Addi-

tionally, BeatDB v3 with v2 style jumping achieves approximately 100 times speedup

over PhysioMiner when running the entire BeatDB system on the sample raw data

files, which total about 157 MB. Processes that took PhysioMiner almost three hours

to complete took BeatDB v3 only two minutes to complete.

How did the jumping styles compare? As expected, BeatDB v3 with v1 style jumps

generated a significant amount of windows (7420 more windows than BeatDB v3 with

v2 style jumping). While this allows BeatDB v3 with v1 style jumping to achieve an

AUROC average that is .5% higher, the system took more than twice as long to run

than BeatDB v3 with v2 style jumping. Perhaps there is a middle ground between

window generation and time to process that increases AUROC score while keeping

run-time and window generation relatively low. Additionally, accuracy and F1 scores

consistently increase along all iterations of BeatDB. The accuracy score represents the

accuracy with which each system classifies the condition windows, while the F1 score

represents the accuracy of the system in classifying condition-positive samples. The

fastest iteration, BeatDB v3 with v2 style jumps, achieves an accuracy score of 97.5%

and an F1 score of 98.6%. The most accurate iteration, BeatDB v3 with v1 style

jumps, achieves optimal accuracy and F1 scores with 99.6% and 99.8%, respectively.

One would assume BeatDB v3 with v1 style jumps might have a high accuracy be-

cause of the large number of condition-negative subwindows that are generated with

that method of jumping, but because the F1 score for this iteration is even higher,

this is verification that the iteration not only correctly classifies negative windows

but the small number of positive windows as well. Both iterations of BeatDB v3

are more accurate than the iterations of PhysioMiner, but the iteration with v1 style

jumps performs amazingly well with condition detection, correctly identifying nearly

all windows in the dataset.

Since this experiment was somewhat small in file size, it is not fully known when

BeatDB v3 with v1 style jumping would start to see memory issues related to the

73



number of windows it generates in its rolling window algorithm. Future researchers

should be cautious of the file sizes of the input data if they choose to use this style

of jumping. Perhaps there is value in exploring the usage of different jump values in

the condition detection algorithm, as different jump values may directly impact the

computability of a raw data file on a worker instance.

Overall, BeatDB v3 performs between 1 and 4 percentage points better when compar-

ing average AUROC score with PhysioMiner and manages to do so while significantly

reducing the amount of processing time. More experimentation needs to be done

in order to correctly classify BeatDB v3’s performance on cloud based systems and

other signal types. Despite this, BeatDB v3 is quite promising in its ability to pro-

cess raw data quickly and accurately and has done so while maintaining a small and

easy-to-understand code base.

5.2 Comparison of BeatDB Iterations

Given the results in the previous section and section 3.3, it can be shown that suc-

cessive iterations of BeatDB have consistently managed to increase the predictive

accuracy of the generated dataset, with BeatDB v3 achieving the greatest accuracy

and AUROC scores in comparison to all previous iterations. To better understand

how the BeatDB system has grown over the development of its iterations, we will

directly compare each consecutive iteration of BeatDB. This will give a better un-

derstanding of the improvements made at each step and how BeatDB’s usability (in

terms of ease of use and code clarity), extensibility, performance (in terms of run speed

and accuracy), and service (framework) cost were affected by each implementation.

5.2.1 BeatDB v0 and BeatDB v1

The differences between BeatDB v0 and BeatDB v1 are quite obvious. BeatDB v0

only contained a population/extraction module, whereas BeatDB v1 also contained

condition detection and aggregation modules. Despite this, BeatDB v0 and v1 were

74



very similar in design, with BeatDB v1 possibly reusing the same code for the pop-

ulation/extraction module. Given this design influence, BeatDB v0 and BeatDB v1

achieved comparable performance for the population/extraction modules and were

developed with similar use-cases in mind, with each iteration hardcoded to run on

the specific environments used for development. Both of the theses that introduced

these iterations of BeatDB focused more on the analysis of the output datasets than

the implementation of the systems. This focus inherently limits the extensibility of

these systems as they were primarily designed to generate results for experimenta-

tion, not for system maintainability, ease of adding new features to the software, or

usability for a general audience. Though their use-cases were limited and each version

was not easily customizable, the iterations were free to run since they utilized free

OpenStack servers located at CSAIL for the bulk of their computations.

5.2.2 BeatDB v1 and PhysioMiner

PhysioMiner attempted to make BeatDB v1 more user-friendly and cutting-edge by

implementing the system within the AWS framework. The AWS framework was

chosen for its potential to increase performance and the experience that would be

gained by implementing the software in a then-new cloud framework. PhysioMiner

allowed for deeper user customization, allowing the user to directly specify arguments

to each stage and control how their data was processed. The user also had a much

simpler way to implement their own feature and condition functions, writing them

in individual Python files for the system to read. Though users were encouraged to

define their own signal types, the task of writing a signal type class containing all

required logic was messy and hard to understand. Given that the stages were all

designed to be run on the AWS framework in sequential order while processing files

in a parallel fashion, PhysioMiner provided further scalability potential than BeatDB

v1. This was because of the ease of scaling when using AWS (provided the user is

willing to spend money on resources) and because BeatDB v1 did not allow for the

processing of the more granular tasks that PhysioMiner could parallelize by nature of

its design, since it split its main pipeline into four separately runnable stages instead

75



of two.

Unfortunately, this potential was not fully realized, as PhysioMiner was plagued with

bugs, especially when processing large data files at scale. As a result, these bugs

caused large amounts of resources to be used for faulty computations that could

not be detected as faulty until after computation was completed. These issues were

largely related to queue timeout issues, which were exacerbated by worker instances

silently failing when processing specific ’killer’ messages. BeatDB v1 did not possess

the kind of distributed power that PhysioMiner did, but it was still free to run and

could be run on files in parallel, making BeatDB v1 ultimately better for large-scale

experiment runs. Still, PhysioMiner achieved higher AUROC scores and significantly

higher accuracy scores over BeatDB v1, though resource concerns are typically more

important to researchers than relatively small increases in resultant AUROC scores.

5.2.3 PhysioMiner and BeatDB v3

The issues with resource usage and low performance within PhysioMiner made these

concepts a focus in the development of BeatDB v3. Additionally, the feature creep

and lack of proper abstraction in certain parts of the software made PhysioMiner

monolithic and difficult to maintain, especially for researchers unfamiliar with its

system design. This prohibited users unfamiliar with the source code from tinkering

with it, limiting the extensibility of the system. Lessons learned from PhysioMiner’s

design influenced the development of BeatDB v3 in a positive way, aiming to make

the code more understandable, documented, and concise in order to encourage other

researchers to develop on top of the system. In BeatDB v3, code readability is

achieved by using superclass patterns for cloud framework components, using the

same design pattern for all stage implementations, restricting code duplication as

much as possible, and documenting the code heavily, ensuring that all code segments

are fully understandable. By making every step of the code clear to understand, the

potential for extensibility of the software goes up, as a wider range of users will be

able to understand and modify the source code to suit their needs.

76



In terms of more general usability, BeatDB v3 has been designed for ease of use,

making it simple to run the pipeline on raw data even if the user is not very familiar

with coding. BeatDB v3 has a config file that contains all run-time arguments,

making it very easy to for a new user to generate output immediately with a simple

one-line command. See section 4.1.1 for a more detailed explanation of how BeatDB

v3 approached usability concerns.

BeatDB v3 sees a very large increase in performance, generating a machine learning

dataset from raw data by a factor of 97.73 times faster than PhysioMiner. As an

example, if PhysioMiner took an hour to process a file from the beginning of the

pipeline to the end (population to feature aggregation), BeatDB v3 would take a

little under 36 seconds to process the same file in its local mode. This whopping

increase in performance will allow resource costs to stay minimized and, if the cloud

framework components are carefully designed, can prevent the same worker and queue

issues from PhysioMiner from having an effect on BeatDB v3.

Version: BeatDB v0 BeatDB v1 PhysioMiner BeatDB v3

Ease of use:
Code clarity:
Extensibility:
Run speed:
Accuracy:
Service cost:

Table 5.3: Simple comparison of BeatDB iterations. PhysioMiner has a lighter
shade of red for performance because, while it achieved faster performance than
previous iterations for smaller cases, it had serious issues with data in large scale
applications, causing performance to slow significantly as workers silently failed

while costing hundreds of dollars per day of computation (see section 4.1.2 for more
details). PhysioMiner also has a lighter shade of green under accuracy since it

managed to increase average AUROC scores on a small dataset but achieved lower
AUROC scores on the overall dataset when compared to BeatDB v1 (see section

3.3.1 for more details).

77



78



Chapter 6

Conclusion

BeatDB v3 has been shown to achieve higher average AUROC scores than Phys-

ioMiner while increasing software processing speed by a factor of almost 98. This

is a great achievement for the system, but further improvements can still be made

on BeatDB v3. This section will discuss how our research questions from the first

chapter were met, along with future work related to the BeatDB system.

6.1 Research Findings

To discuss the findings of this research, the research questions presented in section

1.2 will be answered given the results of the research and work on the BeatDB v3

system.

Does the PhysioMiner system achieve comparable correctness to the BeatDB v1 sys-

tem?

As shown in section 3.3, initial comparisons of BeatDB v1 and PhysioMiner (original)

on the same input showed large increases in accuracy, F1 score, precision, and recall

for PhysioMiner along with a 9% decrease in AUROC score. Attempting to rewrite

condition detection in PhysioMiner with regards to valid beat groups, as discussed

in section 3.3.2, led to slightly higher AUROC scores, but did not reach the AUROC

79



scores that BeatDB v1 did. This, along with compounding issues with the Phys-

ioMiner source code, prompted the design and implementation of BeatDB v3, which

will be the focus of responses to the remaining research questions in this section.

How can the BeatDB system be more usable?

Usability was one of the key motivations for the development of BeatDB v3, which

aimed to create a very user-friendly iteration of BeatDB. This was achieved by focus-

ing on code clarity and ease of use. Users that are not very familiar with computer

science can run the BeatDB v3 code with relative ease, given the short commands

necessary to initiate the pipeline and the grouping of all input arguments in the con-

figuration file. Users that wish to modify the source code will find it easy to navigate

through the flow of the software, since every function is well documented and the

code heavily relies on object oriented principles to minimize code duplication. This

makes it much more simple for users to implement their own signal types and support

for different cloud frameworks while retaining the simplicity of defining the feature

and aggregator functions found in PhysioMiner. For a more in depth treatment of

this topic, refer to section 4.1.1.

How can the BeatDB system be more efficient, in terms of performance, software de-

sign, and implementation?

As discussed in section 4.1.2, BeatDB v3 was rigorously designed before implemen-

tation in order to achieve the minimum number of loops required over the data and

within the software. Learning from the mistakes of PhysioMiner provided the BeatDB

v3 development team with valuable insights related to performance and software de-

sign. This directed the team toward employing a higher-order functions paradigm

for feature and aggregator functions, coupled with object oriented abstraction found

throughout the software in order to reuse code without duplication. Beyond these

large data abstractions, attention was given to each core and utility algorithm neces-

sary for running stages of BeatDB in order to minimize the run-time of each algorithm

80



and cut down on the overall run-time of the system. Given the 97.73x increase in

processing speed (see section 5.1.2), BeatDB v3 far exceeds expectations for perfor-

mance.

Does the BeatDB v3 system achieve comparable correctness to the PhysioMiner and

BeatDB v1 systems?

Section 5.1.2 discusses the outcomes of logistic regression trials on multiple versions

of PhysioMiner and BeatDB v3 in more detail. BeatDB v3 manages to achieve an

average AUROC score that is 1.2% higher than the greatest average AUROC score at-

tained by all PhysioMiner versions. The accuracy and F1 scores are also much better

for BeatDB v3 than PhysioMiner, with BeatDB v3 achieving scores that are 3.1% and

2% higher than PhysioMiner, respectively. When BeatDB v3 is allowed to consider

more subwindows, usually because of a jump style that makes the rolling window al-

gorithm move more slowly across the raw waveform (see section 5.1.1), it can achieve

average AUROC scores that are higher than those achieved by PhysioMiner versions

(see table 5.1). More research needs to be done to consider the optimal jump style

that balances run-time and average AUROC score increase.

How can functionality be added to BeatDB v3 to allow for more customization, input

filtering, and the ability to process multi-dimensional waveforms?

As mentioned in section 4.2.3, BeatDB v3 has added features that allow for easy

implementation of multi-channel and multi-sample (temporal) features. Because of

the higher-order function design, implementing multi-channel features is trivially dif-

ferent from single-channel features, while multi-sample features require slightly more

expertise to create. For a more technical treatment of this feature, refer to section

A.3. The development of BeatDB v3 also led to the development of the standalone

modules for file size filtering and data preprocessing, which can be used with BeatDB

v3 to further customize the output or prepare data for processing, respectively.

81



6.2 Future Work

Given the run-time of BeatDB v3 and its ability to implement multi-channel and

multi-sample features, it is possible for researchers to analyze new and/or customized

signal types in new ways with the system. Previously, researchers at ALFA and

Philips had difficulty predicting hemodynamic instability (HDI), a condition associ-

ated with unstable blood pressure, because it is not a condition that is determined

entirely by physiological readings. Perhaps the new multi-channel feature computing

and chunking abilities of BeatDB will allow for new ways to analyze and understand

aggregate HDI datasets.

Further development should be done on the various types of cloud architectures that

BeatDB can run on. While BeatDB v3 is integrated within AWS, work should be

done so that BeatDB v3 can also be run on OpenStack. Doing this would allow ALFA

researchers to perform experiments on large amounts of data with small jump styles

for free.

Speaking of jump styles from the condition detection procedure, more research should

be given to the effect of different jump styles on AUROC average and run-time. It is

possible that a jump style that maximizes AUROC score while minimizing run-time

exists. If researchers can find this, they may be able to get the benefits of both v1

and v2 style jumping while avoiding the large run-time slowdown associated with v1

style jumps.

To make analysis of resultant datasets faster, developers could add a simple learning

module to the end of BeatDB. Some complications of this include the way that final

output data is stored by BeatDB v3. Since each subwindow table that is stored is

placed in a folder named after each raw data file when BeatDB v3 is run locally, users

need to combine subwindows tables in order to get a final, complete dataset of all

subwindows for all raw data files. This can be done programatically but work has not

been done on this task. Because the experiments with BeatDB v3 only used a small

82



number of sample files, file combining was done by hand for those trials.

Expanding upon the idea of incorporating learning into the system, BeatDB is one

part of the large system that ALFA has conceptualized. BeatDB could be part of a

software suite that allows simple machine learning on any raw data. Connecting var-

ious software systems related to machine learning into one massive machine learning

framework is a long term goal for the ALFA group. Other projects developed within

the group could be included in this suite, such as MLBlocks, which is a platform

for quick and customizable learning of preprocessed data. Users could theoretically

use BeatDB to process their data and MLBlocks to analyze their data in a pipeline

similar to how population/extraction feeds its output to the condition detection/ag-

gregation module. This goal requires that a significant amount of work is done on

other projects related to this overall framework, since there may be interface clashes

between the projects that would comprise this system. For example, the output of

BeatDB would need to be formatted in such a way that MLBlocks can easily accept

is as input. While grandiose, this large machine learning pipeline may prove to be

a breakthrough in the way researchers perform machine learning experiments if it is

able to combine the work of these projects in a cohesive way.

83



84



Appendix A

BeatDB v3 Interface

A.1 BeatDB v3 Code Structure

beatdb/

data/

representations/

Beat.py

GroupWindow.py

PredictionWindow.py

signals/

abp/

abp.py

eeg/

eeg.py

abstract_signal.py

general_features.py

config.yaml

main.py

utils.py

85



Welcome to BeatDB v3’s internals. Each code file should be well documented, so be

sure to read docstrings and informative comments found in more confusing functions.

BeatDB v3 is run by calling the 𝑚𝑎𝑖𝑛.𝑝𝑦 file, which contains functions necessary for

parsing the configuration file and contains the main code for running each of the

stages of BeatDB v3. Based on the user’s command line argument for what stage to

run, a specific function for the stage is called that parses its required variables and

generates necessary constants to be used throughout the stage.

If the population/extraction module is being run, the function will parse necessary

args from the configuration file and a 𝑓𝑒𝑎𝑡𝑢𝑟𝑒_𝑛𝑎𝑚𝑒_𝑡𝑜_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛_𝑑𝑖𝑐𝑡 will be gen-

erated and set as an attribute to the 𝑠𝑖𝑔𝑛𝑎𝑙_𝑡𝑦𝑝𝑒_𝑐𝑙𝑎𝑠𝑠 file by using the utility

function 𝑠𝑒𝑡_𝑓𝑒𝑎𝑡𝑢𝑟𝑒_𝑛𝑎𝑚𝑒_𝑡𝑜_𝑓𝑢𝑛𝑐_𝑑𝑖𝑐𝑡𝑠_𝑖𝑛_𝑠𝑖𝑔𝑛𝑎𝑙_𝑡𝑦𝑝𝑒_𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒. The dic-

tionary maps feature names to functions, found in the 𝑠𝑖𝑔𝑛𝑎𝑙_𝑡𝑦𝑝𝑒_𝑐𝑙𝑎𝑠𝑠 file for the

𝑠𝑖𝑔𝑛𝑎𝑙_𝑡𝑦𝑝𝑒 specified by the user in the configuration file.

Signal type classes generally follow the structure presented in 𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡_𝑠𝑖𝑔𝑛𝑎𝑙.𝑝𝑦.

That is, each 𝑠𝑖𝑔𝑛𝑎𝑙_𝑡𝑦𝑝𝑒_𝑐𝑙𝑎𝑠𝑠 should have an 𝑒𝑑𝑓_𝑡𝑜_𝑐ℎ𝑢𝑛𝑘𝑠 method that per-

forms the main population/extraction algorithm (that is, parses the data into beats

and extracts features from them). Additionally, each of the 𝑠𝑖𝑔𝑛𝑎𝑙_𝑡𝑦𝑝𝑒_𝑐𝑙𝑎𝑠𝑠es

should have a 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒_𝑣𝑎𝑙𝑖𝑑𝑖𝑡𝑦 static method that can be called on samples

of that signal type. For ABP, this method implements the signal abnormality in-

dex mentioned in the thesis. Lastly, 𝑠𝑖𝑔𝑛𝑎𝑙_𝑡𝑦𝑝𝑒_𝑐𝑙𝑎𝑠𝑠 should contain multiple

static feature methods that represent possible feature functions to be used with that

𝑠𝑖𝑔𝑛𝑎𝑙_𝑡𝑦𝑝𝑒_𝑐𝑙𝑎𝑠𝑠 in population/extraction. These feature functions can be de-

fined directly or call functions from 𝑔𝑒𝑛𝑒𝑟𝑎𝑙_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠.𝑝𝑦 to prevent code duplica-

tion. For ABP, 𝑒𝑑𝑓_𝑡𝑜_𝑐ℎ𝑢𝑛𝑘𝑠 calls 𝑔𝑒𝑡_𝑠𝑎𝑚𝑝𝑙𝑒𝑠, 𝑔𝑒𝑡_𝑝𝑢𝑙𝑠𝑒𝑠, and 𝑒𝑥𝑡𝑟𝑎𝑐𝑡_𝑏𝑒𝑎𝑡𝑠,

which yields the chunks array used in condition detection/aggregation. In ABP, Beat

objects, defined in 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝑠/𝐵𝑒𝑎𝑡.𝑝𝑦, are created and stored in the chunks ar-

ray. If population/extraction was run independently, the chunks array will be stored

as a .npy file in the 𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒_𝑓𝑖𝑙𝑒_𝑝𝑎𝑡ℎ argument of the config file. If it was

run in the joint 𝑐𝑟𝑒𝑎𝑡𝑒_𝑑𝑎𝑡𝑎𝑠𝑒𝑡 stage, the chunks array is immediately available for

86



condition detection/aggregation.

Condition detection/aggregation is also defined in 𝑚𝑎𝑖𝑛.𝑝𝑦 and, like population/ex-

traction, consists mostly of configuration argument unpacking and generation of nec-

essary constants, such as the 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑜𝑟_𝑛𝑎𝑚𝑒𝑠_𝑡𝑜_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛_𝑑𝑖𝑐𝑡, which behaves

similarly to the 𝑓𝑒𝑎𝑡𝑢𝑟𝑒_𝑛𝑎𝑚𝑒_𝑡𝑜_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛_𝑑𝑖𝑐𝑡 in population/extraction. After

these variables are set, the stage loops over .npy files in the 𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒_𝑓𝑖𝑙𝑒_𝑝𝑎𝑡ℎ

in order to generate the chunks array and then calls the function 𝑑𝑒𝑡𝑒𝑐𝑡_𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠

to start the rolling window algorithm. This function is left in 𝑚𝑎𝑖𝑛.𝑝𝑦 because it

is the main algorithm behind the stage. This algorithm, shown in a simplified ver-

sion as algorithm 1 in appendix B, performs the rolling window algorithm described

in chapter 3, checking for gap beats in the group window bounds. If no gap beats

exist in the group window bounds, the algorithm calculates the classification and

subwindows, along with their aggregated features (with each subwindow stored as a

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑊𝑖𝑛𝑑𝑜𝑤 instance) in the same iteration and combines all this information

in a 𝐺𝑟𝑜𝑢𝑝𝑊𝑖𝑛𝑑𝑜𝑤 instance. These 𝐺𝑟𝑜𝑢𝑝𝑊𝑖𝑛𝑑𝑜𝑤 objects are collected and written

to file at the end of the stage.

Assuming the configuration file is the same as the one listed in A.5, the output folder

would look as follows after running the joint create dataset stage. (The 𝑎𝑏𝑝_𝑛𝑝𝑦/

folder is an example of an intermediate data folder that would contain .npy files con-

taining chunk arrays if the population/extraction stage was run independently.)

hello :)
beatdb_output/

<segment_id>/

<segment_id>_windows_lead_x_lag_y.csv

<segment_id>_windows_lead_x_lag_y_subwindows_z.csv

<segment_id>_windows_lead_x_lag_y_subwindows_z_joint.csv

abp_npy/

<segment_id>.npy

87



As shown in the directory tree above, three resultant files are generated from condition

detection/aggregation. These files represent the 𝐺𝑟𝑜𝑢𝑝𝑊𝑖𝑛𝑑𝑜𝑤 instances without

subwindows listed, the 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑊𝑖𝑛𝑑𝑜𝑤 instances with classifications from the

parent 𝐺𝑟𝑜𝑢𝑝𝑊𝑖𝑛𝑑𝑜𝑤 instances and pointers back to the parent 𝐺𝑟𝑜𝑢𝑝𝑊𝑖𝑛𝑑𝑜𝑤 and

the raw data file, and a joint file containing both of these instances in a staggered

way. These outputs were included for variety, but the most useful of the output

data files is *𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑖𝑑 * _𝑤𝑖𝑛𝑑𝑜𝑤𝑠_𝑙𝑒𝑎𝑑_𝑥_𝑙𝑎𝑔_𝑦_𝑠𝑢𝑏𝑤𝑖𝑛𝑑𝑜𝑤𝑠_𝑧.𝑐𝑠𝑣. Groups

of these files generated with the exact same arguments can be combined (without

copying over the header) into a large file containing all subwindows generated with

specific arguments. This large subwindows file can be used for learning directly,

since all aggregate features are in the file and since classifications from each parent

𝐺𝑟𝑜𝑢𝑝𝑊𝑖𝑛𝑑𝑜𝑤 are written in the file for each subwindow.

A.2 Running BeatDB v3

A.2.1 Local Mode

To run BeatDB v3 locally, place raw .edf files into the 𝑑𝑎𝑡𝑎_𝑝𝑎𝑡ℎ specified in the

configuration file. Once you have populated this path with raw data files, make

sure that your configuration file has the proper arguments. If required ones are

missing, BeatDB v3 will throw an error and point out the missing argument. Once

the configuration file has been verified for correctness, open a terminal at the root of

the 𝑏𝑒𝑎𝑡𝑑𝑏/ folder (shown in the first directory tree) and run the following command

to run the entire BeatDB system on your raw data files, from population/extraction to

condition detection/aggregation (if your configuration file is not named 𝑐𝑜𝑛𝑓𝑖𝑔.𝑦𝑎𝑚𝑙,

you will need to also supply a −−𝑐𝑜𝑛𝑓𝑖𝑔 argument with the name of your config file,

including the file extension):

python main . py create_dataset l o c a l

Once the code has finished running, you will see output in the path given to the

argument 𝑓𝑖𝑛𝑎𝑙_𝑜𝑢𝑡𝑝𝑢𝑡_𝑝𝑎𝑡ℎ in the configuration file. See the above section for

88



details about the output file structure.

A.2.2 AWS Mode

To run BeatDB v3 on AWS, a few prerequisites need to be met on the AWS platform.

The configuration file contains AWS specific arguments, detailing which SQS queues

to use, which S3 buckets to read from, which folders in the bucket to read from and

write to, among other arguments. A file structure for the S3 bucket is shown in the

following file structure diagram.

hello :)
beatdb_v3_s3_bucket/

beatdb_output/

bin/

data/

abp/

abp_npy/

eeg/

eeg_npy/

logs/

The SQS queues specified in the configuration file must exist in SQS. The S3 bucket

described in the configuration file must contain a folder named 𝑑𝑎𝑡𝑎/. This folder must

contain subfolders named for each signal type (in lowercase) and the subfolders used

for the 𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒_𝑓𝑖𝑙𝑒_𝑝𝑎𝑡ℎ described in the config file (for example, the 𝑑𝑎𝑡𝑎/

folder in the S3 bucket would need to contain 𝑎𝑏𝑝/, 𝑎𝑏𝑝_𝑛𝑝𝑦/, 𝑒𝑒𝑔/, and 𝑒𝑒𝑔_𝑛𝑝𝑦/

subfolders, assuming the configuration file in section A.5 is used and only ABP and

EEG signal types are implemented). The *_𝑛𝑝𝑦/ folders are used to store chunk files

containing the output from population/extraction runs. The S3 bucket must also have

a 𝑏𝑖𝑛/ folder containing all runnable code for BeatDB in the file structure described

89



in section A.1. Final dataset output from BeatDB’s condition detection/aggregation

stage will be stored in the 𝑏𝑒𝑎𝑡𝑑𝑏_𝑜𝑢𝑡𝑝𝑢𝑡/. Logs will be uploaded to 𝑙𝑜𝑔𝑠/ once

worker and master instances have completed the run.

To run BeatDB v3’s stage in AWS mode, run the following commands in the terminal

(if your configuration file is not named 𝑐𝑜𝑛𝑓𝑖𝑔.𝑦𝑎𝑚𝑙, you will need to also supply a

−−𝑐𝑜𝑛𝑓𝑖𝑔 argument with the name of your config file, including the file extension):

python main . py popu lat ion_extract ion master

python main . py condit ion_detect ion_and_aggregat ion master

The first command calls the Master instance for the population/extraction module,

which reads the configuration file and initializes required objects for the pipeline. It

starts by uploading its configuration file to the 𝑏𝑖𝑛/ folder in the S3 bucket to ensure

that the same configuration file is used in all instances. The Master instance creates

all of the requested Worker instances, supplying them with a bootstrap script that

downloads the 𝑏𝑖𝑛/ folder from the S3 bucket and runs the worker code. The Master

instance then creates messages for all files in the S3 bucket’s 𝑑𝑎𝑡𝑎/ * 𝑠𝑖𝑔𝑛𝑎𝑙_𝑡𝑦𝑝𝑒*

and adds them to the SQS queue. Once this is done, it waits until the queue is empty

and all worker messages have completed processing their existing messages and writes

its logs to the S3 bucket before ending the process.

Once the worker instances have downloaded the BeatDB v3 code from the 𝑏𝑖𝑛/ folder,

they launch the worker process, which pulls messages from the queue and processes

the files described by them. For population/extraction, this means each worker parses

the file described by the message into chunks and then extracts features from those

chunks. These chunks are written to a .npy file, like normal, but in AWS mode, this

.npy file is written to the 𝑑𝑎𝑡𝑎/*𝑠𝑖𝑔𝑛𝑎𝑙_𝑡𝑦𝑝𝑒*_𝑛𝑝𝑦 folder in the S3 bucket. After the

file has been uploaded, it is deleted locally while the worker instance grabs another

message from the queue. Worker instances survive until there are no more messages

on the queue. If a worker attempts to pull a message from an empty queue, it will

either stop or be terminated, depending on the 𝑒𝑐2_𝑠𝑡𝑜𝑝 argument in the configura-

90



tion file.

After the first command has completed its run, the second command can be run. As

with population/extraction, this stage launches a master instance that has the same

general logic. The difference between these stages are the input and output paths in

the S3 bucket and how the messages are processed in the worker instances. For this

stage, the S3 input path is the output path of the previous stage

(𝑑𝑎𝑡𝑎/* 𝑠𝑖𝑔𝑛𝑎𝑙_𝑡𝑦𝑝𝑒*_𝑛𝑝𝑦) and the S3 output path is 𝑏𝑒𝑎𝑡𝑑𝑏_𝑜𝑢𝑡𝑝𝑢𝑡/. This means

that the messages in the SQS queue contain links to these .npy files instead of the

original raw data files. The worker instances are prepared for this and process the

chunks using the rolling window condition detection algorithm and feature aggre-

gation. Once the resultant dataset has been generated for the file, it is written to

𝑏𝑒𝑎𝑡𝑑𝑏_𝑜𝑢𝑡𝑝𝑢𝑡/ and then deleted locally. Other than these differences, the master/-

worker logic is the same between both stages of BeatDB v3 in AWS mode, and is

reflected in the codebase (since Master and Worker classes are superclasses of specific

stage Master and Worker classes).

A.3 Implementing Multi-Channel and Multi-Sample

Feature Extraction

BeatDB v3 allows researchers to compute multi-channel and multi-sample features

from specific types of physiological data. For a definition of these terms, please refer

to section 4.2.3. This section will detail the implementation specifics regarding multi-

channel and multi-sample feature extraction, walking through the implementation

present in the EEG signal type as an example of extraction of these advanced types

of features.

At the time of this writing, only the EEG signal type has the implementation for

multi-channel and multi-sample features directly built in. As with other signal types,

the population/extraction stage will call the 𝑒𝑑𝑓_𝑡𝑜_𝑐ℎ𝑢𝑛𝑘𝑠 function from the signal

91



type only, while the function is free to call any of the other functions available to it,

allowing signal types to be flexible in the way that they process their chunks.

For the EEG signal type, the 𝑒𝑑𝑓_𝑡𝑜_𝑐ℎ𝑢𝑛𝑘𝑠 function parses the data from the

raw file into a Python friendly form. The EEG signal type data is represented

as a sequence of samples, with each sample containing 11 readings from a spe-

cific point in time. The EEG sample data is arranged in an array of length 11,

as seen in Table A.1 (descriptions of data columns from Motion Artifact Contami-

nated fNIRS and EEG Data page on PhysioNet1). Once this data is available in a

multi-dimensional Python array, the 𝑒𝑑𝑓_𝑡𝑜_𝑐ℎ𝑢𝑛𝑘𝑠 function passes this data to the

𝑒𝑥𝑡𝑟𝑎𝑐𝑡_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠_𝑓𝑟𝑜𝑚_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 function, specific to the EEG signal type. This

function is where the computation specific to multi-channel and multi-sample features

is located.

Index Value type
0 Sample index
1 Channel 1 : Raw EEG : sampled @ 2048 Hz
2 Channel 2 : Raw EEG : sampled @ 2048 Hz
3 Trigger data for EEG data : sampled @ 2048 Hz
4 Accelerometer 1 : X-axis : sampled @ 200 Hz
5 Accelerometer 1 : Y-axis : sampled @ 200 Hz
6 Accelerometer 1 : Z-axis : sampled @ 200 Hz
7 Accelerometer 2 : X-axis : sampled @ 200 Hz
8 Accelerometer 2 : Y-axis : sampled @ 200 Hz
9 Accelerometer 2 : Z-axis : sampled @ 200 Hz
10 Trigger data for accelerometer data : sampled @ 200 Hz

Table A.1: Layout of data channels contained in a single sample of data from the
EEG dataset

The layout of the code in 𝑒𝑥𝑡𝑟𝑎𝑐𝑡_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠_𝑓𝑟𝑜𝑚_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 is relatively straight-

forward but relies on a few tiny details throughout the system. The function takes

in the parsed signal data along with an argument from the config file that speci-

fies the length of the rolling window used to compute multi-sample features, called

𝑟𝑜𝑙𝑙𝑖𝑛𝑔_𝑤𝑖𝑛𝑑𝑜𝑤_𝑙𝑒𝑛𝑔𝑡ℎ. The function then creates an array in length equal to this
1https://physionet.org/pn4/motion-artifact/

92

https://physionet.org/pn4/motion-artifact/


argument called 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑒𝑑_𝑠𝑎𝑚𝑝𝑙𝑒𝑠, which stores the last 𝑟𝑜𝑙𝑙𝑖𝑛𝑔_𝑤𝑖𝑛𝑑𝑜𝑤_𝑙𝑒𝑛𝑔𝑡ℎ

samples seen. For multi-sample features, the process is relatively simple. Once

the 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑒𝑑_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 array has been filled with 𝑟𝑜𝑙𝑙𝑖𝑛𝑔_𝑤𝑖𝑛𝑑𝑜𝑤_𝑙𝑒𝑛𝑔𝑡ℎ samples,

multi-sample features will be computed using functions specified in the configu-

ration file under the 𝑟𝑜𝑙𝑙𝑖𝑛𝑔_𝑤𝑖𝑛𝑑𝑜𝑤_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 argument on the chunks in the

𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑒𝑑_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 array. This process is almost exactly similar to the aggregation

process in the condition detection/aggregation stage. Once the multi-sample features

have been computed for a specific sample, it is added to the 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑒𝑑_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 array

while the oldest entry in the array is removed, so that the 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑒𝑑_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 array

maintains a length of 𝑟𝑜𝑙𝑙𝑖𝑛𝑔_𝑤𝑖𝑛𝑑𝑜𝑤_𝑙𝑒𝑛𝑔𝑡ℎ. Keep in mind that this process means

that the first 𝑟𝑜𝑙𝑙𝑖𝑛𝑔_𝑤𝑖𝑛𝑑𝑜𝑤_𝑙𝑒𝑛𝑔𝑡ℎ samples in a raw data file will not have values

for the multi-sample features, since the 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑒𝑑_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 array did not yet have a

length of 𝑟𝑜𝑙𝑙𝑖𝑛𝑔_𝑤𝑖𝑛𝑑𝑜𝑤_𝑙𝑒𝑛𝑔𝑡ℎ for these samples.

The computation of multi-channel features is even simpler than the computation of

multi-sample features. For multi-channel features, the only thing that needs to be

programmed is the multi-channel feature functions themselves. For single-channel

signal types, feature functions typically take in a list of samples that represent a beat

and use these values to compute some feature value. In a multi-channel signal type,

such as the EEG signal type, the feature functions take in a list of data channel values

for a single sample. Since each feature function gets the list of data channel values

for a single sample, the feature functions can parse the data with the knowledge of

what each value represents and compute the multi-channel features accordingly. This

is made simple by the nature of the feature functions, which normally return a single

value but can also return a dictionary of key-value pairs that will be added as feature

values for the sample after calculation.

This simple paradigm of allowing the feature functions to return both dictionaries

and single values for feature computation allows multi-channel feature computation

to be simple and flexible to the signal types needs, whether that be computing ad-

ditional features for each individual sample, as is done currently in the EEG signal

93



type, or computing features from chunks. Shifting to this is rather simple, since the

only thing that this change of input would require is that the implementations of each

feature function in a specific signal type are consistent with the nature of their inputs

and outputs. For example, to shift the EEG signal type from computing features for

each individual sample to computing features for a group of samples (a chunk), the

user simply needs to write the feature functions with the assumption that the feature

functions will take in a list of list of data channel values (representing multiple sam-

ples) rather than a list of data channel values (representing a single sample).

This design pattern contains the computational messiness within the signal type im-

plementation, since the functions that parse the feature function return values into a

dictionary of all feature values only care about the final values computed from each

feature function, and whether the functions return single feature values or multiple

feature values. This allows multi-channel and multi-sample features to be easily cal-

culated within any implementable signal type without the need to rewrite BeatDB

source code.

A.4 BeatDB v3 Pitfalls

If you are performing an experiment with BeatDB v3, you should probably make sure

that lag is at least 3 times as large as the number of subwindows you want to split the

lag window into. This is to ensure that each subwindow has at least three beats in it,

so that the aggregated features can be more useful information than the aggregation

function base cases of two values.

If you are adding code to BeatDB v3, please make sure that you really think about

what the code is doing. The most costly operations are those that iterate over the

data, so when implementing a new method, beward that your code does not in-

crease passes over the data unless absolutely necessary. It is easy to introduce addi-

tional loops over the data if not careful. For example, the util function for finding

beat index from time would be significantly slower if a starting index wasn’t sup-

94



plied as an argument. Even then, calculating all three indices using the function

𝑔𝑒𝑡_𝑔𝑟𝑜𝑢𝑝𝑤𝑖𝑛𝑑𝑜𝑤_𝑏𝑒𝑎𝑡_𝑖𝑛𝑑𝑖𝑐𝑒𝑠_𝑓𝑟𝑜𝑚_𝑡𝑖𝑚𝑒 proved to be even more efficient than

calling 𝑔𝑒𝑡_𝑏𝑒𝑎𝑡_𝑖𝑛𝑑𝑒𝑥_𝑓𝑟𝑜𝑚_𝑡𝑖𝑚𝑒 three times, so always be sure to think about

how you’re going about the implementation of a new feature.

Make sure that the 𝑏𝑖𝑛/ folder in the S3 bucket is the exact same code that is being

used to run the Master instance! If the 𝑏𝑖𝑛/ folder is not up to date with your local

changes when you run the commands, your output will not be what you expect and

you’ll probably be confused for a while until you figure out that they weren’t synced.

This can easily be done with the s3 cli provided by Amazon.2

2https://docs.aws.amazon.com/cli/latest/reference/s3/sync.html#examples

95

https://docs.aws.amazon.com/cli/latest/reference/s3/sync.html#examples


A.5 BeatDB v3 Configuration File

config.yaml

-----------------------------------------------------------------

aws:

dynamo_table_prefix: beatdb_v3_test

s3_bucket: beatdb-v3

s3_bin_folder: bin

ec2_image_id: ami-16e4d001

ec2_key_name: aws_alfacsail_baldo

ec2_instance_profile: beatdb_role

ec2_num_instances: 1

ec2_instance_type: r3.large

ec2_stop: yes

sqs_visibility_timeout: 3600

initialize_tables: true

preprocessing:

s3_raw_folder: data/raw

s3_output_folder: data/preprocessed

sqs_queue_name: beatdb_v3_preprocess

preprocessing_scripts:

- scripts/preprocessing/butter_lowpass_filter.py

beatdb:

final_output_path: beatdb_output/

# used to store .npy files from population_extraction

# if run in standalone

intermediate_file_path: beatdb_output/abp_npy/

96



sampling_frequency: 125 # in Hz (sec^-1)

signal_type: abp

population_extraction:

gap_beat_cutoff_length: 6 # in seconds; must be >= 3 seconds

data_path: data/abp/

rolling_window_length: 100 # in number of beats/chunks

features:

- crest

- diastole

- diastole_duration

- kurtosis

- mean_arterial_pressure

- mean

- pressure_area

- pulse

- rms

- skew

- std

- systole

- systole_duration

condition_detection_and_aggregation:

# condition detection

lead: 60 # in seconds

lag: 30 # in seconds

condition_window_len: 1800 # in seconds

# condition_function params automatically set to 90%

# (percentage) of beats with MAP < 60 mmHg (threshold)

condition_function: ahe

97



# aggregation

subwindows: 10

aggregators:

- kurtosis

- mean

- skew

- std

- trend

# list of features from population_extraction to NOT aggregate

excluded_features:

-

98



Appendix B

Algorithms

Algorithm 1 Rolling window pseudocode used in condition detection/aggregation
stage in BeatDB v3
1: procedure 𝑑𝑒𝑡𝑒𝑐𝑡_𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠(list_of_list_of_chunks)
2: for 𝑐ℎ𝑢𝑛𝑘𝑠 in 𝑙𝑖𝑠𝑡_𝑜𝑓_𝑙𝑖𝑠𝑡_𝑜𝑓_𝑐ℎ𝑢𝑛𝑘𝑠 do ◁ Analyze one file at a time
3: 𝑤𝑖𝑛𝑑𝑜𝑤𝑠 = []
4: while 𝑠𝑡𝑎𝑟𝑡_𝑖𝑛𝑑 < 𝑙𝑒𝑛(𝑐ℎ𝑢𝑛𝑘𝑠) do
5: find 𝑙𝑒𝑎𝑑_𝑠𝑡𝑎𝑟𝑡_𝑖𝑛𝑑𝑒𝑥, 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛_𝑤𝑖𝑛𝑑𝑜𝑤_𝑠𝑡𝑎𝑟𝑡_𝑖𝑛𝑑𝑒𝑥, and

𝑤𝑖𝑛𝑑𝑜𝑤_𝑒𝑛𝑑_𝑖𝑛𝑑𝑒𝑥
6: if gap beat in group window range then
7: 𝑠𝑡𝑎𝑟𝑡_𝑖𝑛𝑑 = first valid beat after gap beat
8: jump to start of while loop
9: end if

10: 𝑠𝑢𝑏𝑤𝑖𝑛𝑑𝑜𝑤𝑠 = 𝑓𝑖𝑛𝑑_𝑠𝑢𝑏𝑤𝑖𝑛𝑑𝑜𝑤𝑠(𝑐ℎ𝑢𝑛𝑘𝑠)
11: 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 = 𝑢𝑠𝑒𝑟_𝑑𝑒𝑓_𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛_𝑤𝑖𝑛𝑑𝑜𝑤)
12: 𝑤𝑖𝑛𝑑𝑜𝑤𝑠.𝑎𝑝𝑝𝑒𝑛𝑑(window object created from bound indices, subwin-

dows, and classification)
13: if 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 == 𝐹𝑎𝑙𝑠𝑒 then
14: //𝑠𝑡𝑎𝑟𝑡_𝑖𝑛𝑑+ = 𝑙𝑎𝑔 ◁ v1 style jumps, commented out
15: 𝑠𝑡𝑎𝑟𝑡_𝑖𝑛𝑑+ = 𝑙𝑒𝑛(𝑐ℎ𝑢𝑛𝑘𝑠) * .10 ◁ v2 style jumps
16: else
17: 𝑠𝑡𝑎𝑟𝑡_𝑖𝑛𝑑 = 𝑤𝑖𝑛𝑑𝑜𝑤_𝑒𝑛𝑑_𝑖𝑛𝑑𝑒𝑥+ 1 ◁ Don’t overlap windows
18: end if
19: end while
20: 𝑤𝑟𝑖𝑡𝑒_𝑤𝑖𝑛𝑑𝑜𝑤𝑠_𝑎𝑛𝑑_𝑠𝑢𝑏𝑤𝑖𝑛𝑑𝑜𝑤𝑠_𝑡𝑜_𝑓𝑖𝑙𝑒𝑠(𝑤𝑖𝑛𝑑𝑜𝑤𝑠)
21: end for
22: end procedure

99



Algorithm 2 Find subwindows pseudocode used in condition detection/aggregation
stage in BeatDB v3. This code is simplified from the actual implementation for
readability but is very similar in process.
1: procedure 𝑓𝑖𝑛𝑑_𝑠𝑢𝑏𝑤𝑖𝑛𝑑𝑜𝑤𝑠(𝑎𝑙𝑙_𝑓𝑖𝑙𝑒_𝑐ℎ𝑢𝑛𝑘𝑠)
2: 𝑠𝑢𝑏𝑤𝑖𝑛𝑑𝑜𝑤𝑠 = []
3: 𝑎𝑙𝑙_𝑠𝑢𝑏𝑤𝑖𝑛𝑑𝑜𝑤𝑠_𝑐ℎ𝑢𝑛𝑘𝑠 = 𝑠𝑝𝑙𝑖𝑡_𝑖𝑛𝑡𝑜_𝑒𝑣𝑒𝑛_𝑔𝑟𝑜𝑢𝑝𝑠(𝑎𝑙𝑙_𝑓𝑖𝑙𝑒_𝑐ℎ𝑢𝑛𝑘𝑠)
4: for 𝑠𝑢𝑏𝑤𝑖𝑛𝑑𝑜𝑤_𝑐ℎ𝑢𝑛𝑘𝑠 in 𝑎𝑙𝑙_𝑠𝑢𝑏𝑤𝑖𝑛𝑑𝑜𝑤𝑠_𝑐ℎ𝑢𝑛𝑘𝑠 do
5: 𝑎𝑔𝑔_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒_𝑎𝑙𝑙_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠(𝑠𝑢𝑏𝑤𝑖𝑛𝑑𝑜𝑤_𝑐ℎ𝑢𝑛𝑘𝑠)
6: create 𝑠𝑢𝑏𝑤𝑖𝑛𝑑𝑜𝑤 object with index bounds and 𝑎𝑔𝑔_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠
7: 𝑠𝑢𝑏𝑤𝑖𝑛𝑑𝑜𝑤𝑠.𝑎𝑝𝑝𝑒𝑛𝑑(𝑠𝑢𝑏𝑤𝑖𝑛𝑑𝑜𝑤)
8: end for
9: return 𝑠𝑢𝑏𝑤𝑖𝑛𝑑𝑜𝑤𝑠

10: end procedure

Algorithm 3 Feature aggregation pseudocode used in condition detection/aggrega-
tion stage in BeatDB v3. This code is simplified from the actual implementation for
readability but is very similar in process.
1: procedure 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒_𝑎𝑙𝑙_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠(𝑠𝑢𝑏𝑤𝑖𝑛𝑑𝑜𝑤_𝑐ℎ𝑢𝑛𝑘𝑠)
2: 𝑎𝑔𝑔_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = 𝑀𝑎𝑝()
3: for 𝑎𝑔𝑔_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 in 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 do
4: 𝑓𝑒𝑎𝑡𝑢𝑟𝑒_𝑣𝑎𝑙𝑢𝑒𝑠 = all values of a specific feature from 𝑠𝑢𝑏𝑤𝑖𝑛𝑑𝑜𝑤_𝑐ℎ𝑢𝑛𝑘𝑠
5: 𝑎𝑔𝑔_𝑓𝑒𝑎𝑡𝑢𝑟𝑒_𝑛𝑎𝑚𝑒 = 𝑓𝑒𝑎𝑡𝑢𝑟𝑒_𝑛𝑎𝑚𝑒+ ”_” + 𝑎𝑔𝑔_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛_𝑛𝑎𝑚𝑒
6: 𝑎𝑔𝑔_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠[𝑎𝑔𝑔_𝑓𝑒𝑎𝑡𝑢𝑟𝑒_𝑛𝑎𝑚𝑒] = 𝑎𝑔𝑔_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑓𝑒𝑎𝑡𝑢𝑟𝑒_𝑣𝑎𝑙𝑢𝑒𝑠)
7: end for
8: return 𝑎𝑔𝑔_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠
9: end procedure

100



Bibliography

[1] M. Akin. Comparison of Wavelet Transform and FFT Methods in the Analysis
of EEG Signals. Journal of Medical Systems, 26(3):241–247, 2002.

[2] Amazon. DynamoDB Local. Version 1.0. https://docs.aws.amazon.com/
amazondynamodb/latest/developerguide/DynamoDBLocal.html. Accessed
10/26/2016.

[3] A. Baldominos. BeatDB v2 Documentation. Anyscale Learning for All, CSAIL,
2016.

[4] A. Baldominos and ALFA. PhysioMiner System Architecture. Meeting with
Philips, 2016.

[5] M. C. de Jongh, A. C. Maan, E. T. van der Velde, and C. A. Swenne. A
Wavelet-Based Artifact Reduction From Scalp EEG for Epileptic Seizure
Detection. IEEE Journal of Biomedical and Health Informatics, 2015.
http://ieeexplore.ieee.org/document/7158988/. Accessed 03/24/2017.

[6] M. C. de Jongh, A. C. Maan, E. T. van der Velde, and C. A. Swenne. Serial
ECG analysis after myocardial infarction: When heart failure develops, the
ECG becomes increasingly discordant. Computing in Cardiology Conference
(CinC), 2016. http://ieeexplore.ieee.org/document/7868778/. Accessed
04/01/2017.

[7] F. Dernoncourt. BeatDB: An end-to-end approach to unveil saliencies from
massive signal data sets. Master’s project, Massachusetts Institute of
Technology, CSAIL, Feb. 2015. http://alfagroup.csail.mit.edu/12.x/
tiki-download_file.php?fileId=144&display. Accessed 09/26/2016.

[8] F. Dernoncourt, K. Veeramachaneni, and U.-M. O’Reilly. BeatDB: A large
scale waveform feature repository. NIPS 2013, Machine Learning for Clinical
Data Analysis and Healthcare Workshop, page 4, Dec. 2013.
http://alfagroup.csail.mit.edu/12.x/tiki-download_file.php?fileId=
135&display. Accessed 09/26/2016.

[9] M. Douglass, G. Clifford, A. T. Reisner, G. B. Moody, et al. Computer-assisted
de-identification of free text in the MIMIC II database. Computers in
Cardiology, 2004, 2004. http://ieeexplore.ieee.org/document/1442942/.
Accessed 04/10/2017.

101

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DynamoDBLocal.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DynamoDBLocal.html
http://ieeexplore.ieee.org/document/7158988/
http://ieeexplore.ieee.org/document/7868778/
http://alfagroup.csail.mit.edu/12.x/tiki-download_file.php?fileId=144&display
http://alfagroup.csail.mit.edu/12.x/tiki-download_file.php?fileId=144&display
http://alfagroup.csail.mit.edu/12.x/tiki-download_file.php?fileId=135&display
http://alfagroup.csail.mit.edu/12.x/tiki-download_file.php?fileId=135&display
http://ieeexplore.ieee.org/document/1442942/


[10] V. Gopal. PhysioMiner: A scalable cloud based framework for physiological
waveform mining. Master’s project, Massachusetts Institute of Technology,
CSAIL, June 2014. http://alfagroup.csail.mit.edu/12.x/
tiki-download_file.php?fileId=152&display. Accessed 09/26/2016.

[11] D. Hanley, L. S. Prichep, J. Bazarian, J. S. Huff, et al. Emergency department
triage of traumatic head injury using a brain electrical activity biomarker: A
multisite prospective observational validation trial. Academic Emergency
Medicine, 2017. https://www.ncbi.nlm.nih.gov/pubmed/28177169. Accessed
04/06/2017.

[12] N. Hazarika, J. Z. Chen, A. C. Tsoi, and A. Sergejew. Classification of EEG
signals using the wavelet transform. Digital Signal Processing Proceedings, 1997.
http://ieeexplore.ieee.org/document/627975/. Accessed 03/24/2017.

[13] P.-W. Huang, S.-C. Tang, Y.-M. Lin, Y.-C. Liu, et al. Predicting stroke
outcomes based on multi-modal analysis of physiological signals. Digital Signal
Processing (DSP), 2015. http://ieeexplore.ieee.org/document/7251913/.
Accessed 04/01/2017.

[14] M. Längkvist, L. Karlsson, and A. Loutfi. Sleep stage classification using
unsupervised feature learning. Advances in Artificial Neural Systems, 2012.

[15] H. Lee, C. Ekanadham, and A. Y. Ng. Sparse deep belief net model for visual
area v2. In J. C. Platt, D. Koller, Y. Singer, and S. T. Roweis, editors,
Advances in Neural Information Processing Systems 20, pages 873–880. Curran
Associates, Inc., 2008.

[16] J. Lee, D. J. Scott, M. Villarroel, G. D. Clifford, et al. Open-access MIMIC-II
database for intensive care research. Engineering in Medicine and Biology
Society, EMBC, 2011 Annual International Conference of the IEEE, 2011.
http://ieeexplore.ieee.org/document/6092050/. Accessed 04/06/2017.

[17] Q. Li, R. G. Mark, G. D. Clifford, et al. Artificial arterial blood pressure
artifact models and an evaluation of a robust blood pressure and heart rate
estimator. Biomedical Engineering Online, 8(13), 2009.

[18] B. H. McGhee and E. J. Bridges. Monitoring arterial blood pressure: what you
may not know. Critical Care Nurse, 22(2):66–79, 2002.

[19] Y.-J. Min, H.-K. Kim, Y.-R. Kang, G.-S. Kim, et al. Design of Wavelet-Based
ECG Detector for Implantable Cardiac Pacemakers. IEEE Transactions on
Biomedical Circuits and Systems, 2013.
http://ieeexplore.ieee.org/document/6471259/. Accessed 04/11/2017.

[20] G. B. Moody, R. G. Mark, and A. L. Goldberger. PhysioNet: a Web-based
resource for the study of physiologic signals. IEEE Engineering in Medicine
and Biology Magazine, 20(3):70–75, 2002.
http://ieeexplore.ieee.org/document/932728/. Accessed 04/06/2017.

102

http://alfagroup.csail.mit.edu/12.x/tiki-download_file.php?fileId=152&display
http://alfagroup.csail.mit.edu/12.x/tiki-download_file.php?fileId=152&display
https://www.ncbi.nlm.nih.gov/pubmed/28177169
http://ieeexplore.ieee.org/document/627975/
http://ieeexplore.ieee.org/document/7251913/
http://ieeexplore.ieee.org/document/6092050/
http://ieeexplore.ieee.org/document/6471259/
http://ieeexplore.ieee.org/document/932728/


[21] W. Ren, M. Han, J. Wang, D. Wang, et al. Efficient feature extraction
framework for EEG signals classification. Intelligent Control and Information
Processing (ICICIP), 2016.
http://ieeexplore.ieee.org/document/7885895/. Accessed 04/01/2017.

[22] M. Saeed, M. Vilarroel, A. T. Reisner, G. Clifford, et al. Multiparameter
intelligent monitoring in intensive care II (MIMIC-II): A public-access ICU
database. Critical Care Medicine, 39(5):952–960, 2011.

[23] K. A. Salam and G. Srilakshmi. An algorithm for ECG analysis of arrhythmia
detection. Electrical, Computer and Communication Technologies (ICECCT),
2015. http://ieeexplore.ieee.org/document/7226130/. Accessed
04/01/2017.

[24] C. Spencer, J. Pickhardt, N. Gauthier, N. Carroll, et al. fake-s3. Version 0.2.4.
https://github.com/jubos/fake-s3. Accessed 10/26/2016.

[25] J. X. Sun, A. T. Reisner, and R. G. Mark. A signal abnormality index for
arterial blood pressure waveforms. Computers in Cardiology, 2006, pages
13–16, 2006.

[26] K. T. Sweeney, H. Ayaz, T. Ward, M. Izzetoglu, et al. A Methodology for
Validating Artifact Removal Techniques for Physiological Signals. IEEE
Transactions on Information Technology in Biomedicine, 16(5):918–926, 2012.
http://ieeexplore.ieee.org/document/6236173/. Accessed 03/20/2017.

[27] K. T. Sweeney, S. F. McLoone, and T. Ward. The Use of Ensemble Empirical
Mode Decomposition With Canonical Correlation Analysis as a Novel Artifact
Removal Technique. IEEE Transactions on Biomedical Engineering,
60(1):97–105, 2012. http://ieeexplore.ieee.org/document/6332491/.
Accessed 03/20/2017.

[28] Z. Syed, J. Guttag, and C. Stultz. Clustering and symbolic analysis of
cardiovascular signals: Discovery and visualization of medically relevant
patterns in long-term data using limited prior knowledge. EURASIP Journal
on Advances in Signal Processing, 2007.
http://dspace.mit.edu/handle/1721.1/69825. Accessed 04/02/2017.

[29] A. Szczepanski and K. Saeed. Real-Time ECG Signal Feature Extraction for
the Proposition of Abnormal Beat Detection - Periodical Signal Extraction.
Biometrics and Kansei Engineering (ICBAKE), 2013.
http://ieeexplore.ieee.org/document/6603513/. Accessed 04/06/2017.

[30] T. Tabassum and M. Islam. An approach of cardiac disease prediction by
analyzing ECG signal. Electrical, Computer and Communication Technologies
(ICECCT), 2016. http://ieeexplore.ieee.org/document/7873093/.
Accessed 04/01/2017.

103

http://ieeexplore.ieee.org/document/7885895/
http://ieeexplore.ieee.org/document/7226130/
https://github.com/jubos/fake-s3
http://ieeexplore.ieee.org/document/6236173/
http://ieeexplore.ieee.org/document/6332491/
http://dspace.mit.edu/handle/1721.1/69825
http://ieeexplore.ieee.org/document/6603513/
http://ieeexplore.ieee.org/document/7873093/


[31] A. Waldin. Learning blood pressure behavior from large blood pressure
waveform repositories and building predictive models. Master’s project,
Massachusetts Institute of Technology, CSAIL, June 2013. http://alfagroup.
csail.mit.edu/12.x/tiki-download_file.php?fileId=148&display.
Accessed 09/26/2016.

[32] D. Wang and Y. Shang. Modeling Physiological Data with Deep Belief
Networks. International journal of information and education technology
(IJIET), 3(5):"505–511", 2013.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4142685/. Accessed
04/03/2017.

[33] A. Warski et al. elasticmq. Version 0.9.3.
https://github.com/adamw/elasticmq. Accessed 09/16/2016.

[34] K. C. Wee and M. S. M. Zahid. Cloud Computing for ECG Analysis Using
MapReduce. Advanced Computer Science Applications and Technologies
(ACSAT), 2015. http://ieeexplore.ieee.org/document/7478728/.
Accessed 04/01/2017.

[35] P. Zhang, J. Liu, X. Wu, X. Liu, et al. A novel feature extraction method for
signal quality assessment of arterial blood pressure for monitoring cerebral
autoregulation. Bioinformatics and Biomedical Engineering (iCBBE), 2010.
http://ieeexplore.ieee.org/document/5515739/. Accessed 04/09/2017.

[36] W. Zong, T. J. Heldt, G. B. Moody, and R. G. Mark. An open-source
algorithm to detect onset of arterial blood pressure pulses. Computers in
Cardiology, 2003, pages 259–262, 2003.
http://ieeexplore.ieee.org/document/1291140/. Accessed 04/06/2017.

104

http://alfagroup.csail.mit.edu/12.x/tiki-download_file.php?fileId=148&display
http://alfagroup.csail.mit.edu/12.x/tiki-download_file.php?fileId=148&display
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4142685/
https://github.com/adamw/elasticmq
http://ieeexplore.ieee.org/document/7478728/
http://ieeexplore.ieee.org/document/5515739/
http://ieeexplore.ieee.org/document/1291140/

	Introduction
	Development Background
	Objectives
	Organization

	Background
	Related Work
	Feature Engineering
	Prediction of Medical Events
	Computing Frameworks

	Medical Data
	Issues with Waveform Data
	Using the Data


	BeatDB
	BeatDB Design
	Beat Object Generation
	Dataset Preparation

	Previous Implementations
	BeatDB v0
	BeatDB v1
	PhysioMiner

	Modifications to PhysioMiner
	Comparison with BeatDB v1
	Valid Beat Groups (VBGs)


	BeatDB v3
	Motivations
	Usability
	Efficiency
	Correctness

	New Architecture
	System Overview
	Optimizations from Previous BeatDB Iterations
	Additional Functionality


	Demonstration of v3 with Original ABP Data
	Data-Based Comparison Between PhysioMiner and BeatDB v3 Versions
	v3 Jumping Styles
	Experiment and Results

	Comparison of BeatDB Iterations
	BeatDB v0 and BeatDB v1
	BeatDB v1 and PhysioMiner
	PhysioMiner and BeatDB v3


	Conclusion
	Research Findings
	Future Work

	BeatDB v3 Interface
	BeatDB v3 Code Structure
	Running BeatDB v3
	Local Mode
	AWS Mode

	Implementing Multi-Channel and Multi-Sample Feature Extraction
	BeatDB v3 Pitfalls
	BeatDB v3 Configuration File

	Algorithms

