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Abstract

Comparing irregular and event-driven time series data points is beyond the capabil-
ities of most statistical techniques. This limits the potential to run insightful retro-
spective studies on many cross-sectional time-series datasets. In order to unlock the
value of these datasets, we need techniques to standardize observations with irregular
events enough to compare them to each other, and ways to select and sample them
so as to produce class balances for each strata at modeling time that lend themselves
to statistically sound analysis.

In this study, we have developed two selection techniques and three sampling
techniques for a characteristic cross-sectional time-series dataset. We found that
using a Fluid-Balance Similarity-Based Dynamic Time Warp selection procedure with
nearest neighbor parameter k=1 and using a Gamma distribution for sampling days
produced consistently better class balance than all other methods when bootstrapped
over 100 independent runs. We have written, documented and published open source
MATLAB code for each selection and sampling technique, along with our bootstrap
test.

To evaluate our results, we have developed the Class Imbalance Penalty, a new
metric that gives the lowest scores to the selection and sampling runs that produce
most comparable counts of treatment and non-treatment observations for all strata.

We validated our methods in the context of a study of diuretics treatment ef-
fects in ICU patients with Sepsis, drawn from the MIMIC II database. Starting
from a group of 3,503 unique ICU stays from 2,341 study patients, with a Diuretics-
treatment cohort of 349 unique ICU stays from 332 patients, we tested each selection
and sampling technique, observing the trends across our different methods. We ob-
served that sampling day was the stronger predictor of good class balance compared
with selection technique, that the strongest similarity level (k=1) with the shortest
history we considered produced the best results, and using a Gamma distribution for
timepoint sampling most closely matched the distribution of actual administration
days. Ultimately, we found strong evidence that our study lacked an important co-
variate, physician-id, to more fully account for seemingly unpredictable assignments
to Diuretics-treatment in our dataset.

Thesis Supervisor: Una-May O'Reilly
Title: Principal Research Scientist
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Chapter 1

Introduction

1.1 Overview

Retrospective studies are very important for both pre-study analysis and for situations
where running a full RCT maybe to too expensive, dangerous or unethical. How do we
study things like the impact of putting a new police outpost in a given neighborhood,
or the effect of AIDS therapy upon mortality? In either case, we cannot setup a
normal RCT and randomly assign stations or therapy. Our best course of action
would be to examine prior cases, then carefully model and account for each feature
with respect to our response, and then we may be able to find some trends between the
treatment-negative and treatment-positive groups that are significant and persistent.

Accounting for factors that are correlated with both the dependent variables and
the independent variable, known as confounders, in a modeling problem poses diffi-
cult challenges to retrospective studies, and is a major focus of many retrospective
study procedures. Improving upon existing techniques to better account for these
confounders would increase the generalizability of subsequent retrospective analysis.
Also, modifying these techniques to grapple with variables that vary over time, or
time-series, is important for generalizing to a wide range of important problems. In
recent years there has been an explosion in available time series datasets as collection
mechanisms have improved and the expectations for publicly available data have risen.

This enables many insightful and never-before-possible retrospective studies, if only
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researchers can be equipped with practical techniques for analysis and comparison.
Traditionally, time series data has seen its best applications in Univariate modeling
settings, through the application of ARIMA and exponential smoothing techniques.
This is not the way forward though for the vast majority of datasets — the other
collected features need to be included in the modeling process if we are to build use-
ful, realistic and generalizable models of the world, which can adequately deal with
confounders. This kind of setup is called a cross-sectional time series problem.

This thesis centers around the two most significant data science hurdles for cross-
sectional time series in a retrospective study. We address them as our two experimen-
tal questions. For event-based data, the timeline of results that we wish to consider
as a single case or observation can vary widely. One observation may have 12 events
spanning 12 hours, one per hour, while another observation may have 5 events in 1
hour and 1 event 36 hours later. Comparing these two observations is beyond the
capabilities of many statistical techniques used in retrospective studies. This leads

us to our first question:

e Question 1: How should we represent event-driven and irregular time-series data

for use in a retrospective study?

Retrospective studies begin with a hypothesis about a given treatments effect on
measured outcomes and a set of source data. Ultimately the goal of the study is
to produce many comparable sets of treatment and non-treatment observations to
use in evaluating the validity of the hypothesis. In a healthcare retrospective study,
comparable usually means that each patient in the treatment group is matched with
patients in the non-treatment group that have equivalent health status, and that
we can achieve class balance across all levels of health status. Our second question

concerns this class balance:

e Question 2: How do we select and sample cohorts from our study group to
produce strata wherein observations have comparable features and likelihood of
treatment at all levels (henceforth referred to as class balanced quintiles) despite

the influence of confounding variables?
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As a characteristic problem to explore and test new techniques for answering these
questions, we have chosen to study a sepsis-patient study group from the MIMIC II
database, extracting event records used to inform diuretics-related care decisions.
First we tackle Question 1 the representation problem inherent in cross-sectional
time-series datasets using a lag variable and binning approach, and examine the
resulting matrix. Then we address Question 2, comparing and analyzing a number of
cohort selection/sampling procedures for that matrix to test how to achieve excellent
class balance for non-treatment observations in this data. The ultimate aims are to
build and evaluate practical tools for addressing these fundamental questions and

unlock the promise in many new and interesting datasets.

1.2 Medical Background & Data Source

Sepsis is a specific condition described as severe full body inflammation in response to
a serious infection. Patients diagnosed with sepsis suffer from a long list of symptoms:
very low blood pressure and heart racing, swelling, flushing, fever and hyperventila-
tion. These patients are routinely treated through IV and thus their body fluid levels
are elevated for a time. [3] Sometimes these patients’ bodies resolve this issue them-
selves quickly and naturally, but when they do not doctors are left with a choice: wait
until the patient’s body is able to process the fluids and bring them under control
(risky for the patient if this is too slow), or prescribe a diuretic drug to induce the
patient’s body to reduce fluid levels back to normal. [3] When the body has difficulty
dealing with these conditions and these fluid levels remain high or unstable, drugs
called diuretics are commonly used to reduce them by causing the patient to urinate
out the excess water. These diuretics work by inducing the kidneys to expel sodium,
in turn causing the body to release water from the bloodstream. Treatment of many
conditions such as kidney failure, hypertension, heart failure, etc., regularly involve
the use of diuretics.

Given how common and important this decision point is, investigating it through

our ICU dataset is interesting and relevant — a researcher might want to use tech-
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niques like the ones we propose to check if use of diuretics is beneficial or harmful
for sepsis patients. Is it better to allow critical sepsis patients to resolve elevated
fluid levels without drugs or to prescribe diuretics? Different doctors might judge
the same situation very differently; given this grey area, lets see if our study results
clearly identify any best practices regarding diuretics use.

This thesis will run a retrospective analysis into diuretics use as a characteristic
problem and setting for building and testing new techniques. Our focus was on a
set of 332 sepsis patients who received diuretics, as found in the MIMIC2 database
compiled from Beth Israel Deaconess Medical Center in Boston, MA. From this we
extracted several features that our medical partners identified as key indicators for
diuretics treatment.

The next challenge was to assemble sepsis patients who did not receive diuretics
who could be balanced with the ones who did. This can be done with a variety
of selection and sampling techniques. One technique is better than another if it
achieves better overall class balance across all 5 quintiles, that is, when the entire
D+, D- group is stratified based on propensity, there are sufficient relative quantities
of D+, D- in each strata of health status to make statistically sound comparisons. We
used the Propensity Score modeling technique by Rosenbaum and Rubin [7] as our
modeling procedure, allowing us to experiment with several selection and sampling
techniques. Several of the proposed techniques appear competent at constructing class
balanced quintiles of treatment and non-treatment patients with moderate amounts
of data, and set the stage for making similar kinds of analysis straightforward with

our software tools.

1.3 Research Questions & Contributions

This thesis asks the following questions for data science and statistical analysis in a

cross-sectional time-series retrospective study:

e How do we prepare event-driven and irregular data for modeling?
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— We smoothed our event-based data on days, taking mean and median for
each variable, for each day. This makes previously incomparable observa-

tions comparable despite different timing and events.

e Which selection and sampling techniques produce the most balanced quintiles?

— We developed two selection and three sampling techniques for preparing
retrospective studies on irregular time-series data, and software for per-
forming bootstrap iterations for combinations of techniques. We found
that using a Fluid-Balance Similarity-Based Dynamic Time Warp selec-
tion procedure with nearest neighbor parameter k=1 and using a Gamma
distribution for sampling days produced consistently better class balance

than all other methods when bootstrapped over 100 independent runs.

e How can we quantitatively measure the balance of a set of quintiles?

— We developed the Class Imbalance Penalty, a class balance metric for se-
lecting quintiles for statistically sound comparisons, which enables relative
ranking of stratified matching procedures. We have demonstrated that it
gives low scores for the procedures that produce the most class-balanced
quintile results for all strata and lend themselves to statistically sound

future analysis.

For our retrospective study on Diuretics treatment effects for Sepsis patients, we ask

the following questions for our study’s context:

e What differences in class balance do we observe for the tested selection and

sampling techniques?

— We found that sampling had a stronger effect on class balance than se-
lection, and that using a Gamma distribution fit to pick sampling days
produced more statistically comparable quintiles than all other methods,

for any selection procedure.
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e [s Fluid-Balance Similarity-Based selection effective as a health status similarity

technique for sepsis patients?

— We found that Fluid-Balance Similarity-Based DTW selection with k=1
and lag=3 in combination with Gamma distribution sampling is the best
combination among the tested methods, but purely Random sampling out-

performs it for many other values of k.
e What do our experimental procedure results mean for our study’s context?

— We found strong evidence suggesting that physician and provider data are

key missing covariates for predicting Diuretics administration in the ICU.

1.4 Roadmap

This thesis proceeds as follows:

e In Chapter 2 we detail our data and the experimental procedures used in
this thesis, including the Patient-Day Matrix, Dynamic-Time-Warp selection,

Gamma Selection and the Imbalance Penalty

e In Chapter 3 we present the results from our experiments and discuss our

findings

e In Chapter 4 we present our conclusions and describe opportunities for future

work
e In Chapter 5 we provide a glossary of terms used in this thesis

e Finally, we provide a bibliography of our sources

20



Chapter 2

Methods

2.1 Overview

This chapter outlines the methods and experimental procedures used in this thesis.
To answer our 4 experimental questions, we need to both develop a test problem to
use as a benchmark and construct an experimental procedure around the selection
strategies we want to evaluate for optimal class balance. Each of the sections below
will describe how a certain procedure was conducted or how a given step in the

analysis was performed. It proceeds as follows:

e In Section 2.2 we describe the source data and reasons behind the selection of

the dataset we use as our characteristic problem.

e In Section 2.3 we describe a transform to a new data representation called the

Patient-Day Matrix

e In Section 2.4 we describe the experimental procedure, involving bootstrapping

and Propensity Score matching on quintiles

e In Section 2.5 we describe the non-treatment selection and sampling procedures

used within the experimental procedure

e In Section 2.6 we describe the metric used to evaluate class balance quantita-

tively

21



2.2 Source Data

The data used in our study was taken from the MIMIC II database (Multiparameter
Intelligent Monitoring in Intensive Care), which has de-identified physiological data
from thousands of patients who visited the ICU between 2001 and 2007 at Beth Israel
Deaconess Medical Center (BIDMC) in Boston, Massachusetts. [5] This database
is a good starting point for this study for many reasons: it is freely available to
referenced researchers in relevant fields, contains data from a wide range of inter-
hospital perspectives (medical ICU, surgical ICU, cardiac care unit, cardiac surgery
recovery unit), and contains high temporal resolution in many areas. Medical data
is a very common setting for time-series retrospective studies, so this dataset is very

realistic test problem for developing and evaluating new techniques.

(1cu )

Bedside monitoring

. m .

* Waveforms Calculated

* Trends. vanables

* Alarms (SAPS, SOFA, |:>
Elixhauser
‘co-morbidity)

+ Laboratory
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 swsemomnn | )

Figure 2-1: Diagram of the MIMIC II Database and its component parts.

The MIMIC IT Clinical Database contains physiological values verified by nurses
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(usually on an hourly basis), nurses notes, IV medications, fluid balances, demograph-
ics, physician orders, discharge summaries, I[CD9 codes and more. These values were
collected within the hospital using a Phillips CareVue Clinical Information System
deployed in all the study ICUs. [5] Significant post-processing has been done by the
team compiling the dataset at the hospital, to obtain integrated and unified records
for each patient, and de-identify it in compliance with HIPAA (Health Insurance
Portability and Accountability Act) standards.

Our study utilizes data gathered from the 32,000 patients represented in the Clini-
cal Database. This database has records, which are recorded as events for example, a
record for an administered medication would be identified by several features: Subject
ID, Hospital Admission ID, ICUSTAY ID, the name of the drug, and a timestamp.
We can think of these events as forming a time-series of data about the patient,

describing the patients physiological changes and intervention events.

2.3 Patient-day Matrix: A Representation For Nor-

malizing Patient Records

Event-driven time series data present a representation problem: how do we express
and record changes in each time-bound feature in a consistent way across all patients

in the dataset?

Figure 2-2 shows two hypothetical patient timelines with different intervals and
sequences of events. Without any smoothing, an event from Patient 1 is tough to
compare with a similar event for Patient 2 since they may occur at different times
and have very different preceding and succeeding events. By smoothing over days,
the contents of each day become comparable between the two patients.

We call the transformation applied in this study the Patient-Day-Matrix (PDM).
For all patients in the study with recorded temporal events, we generate a new
row in the dataset for each 24-hour period they have been in the ICU, and

report the means and medians for each feature, for each day. Figure 2-3 shows an

23



Admission
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Figure 2-2: Diagram of two example patient timelines. Even in the case where
patients have very similar event types, counts and timelines, small differences in
timing can make analysis complex.

Systolic BP Fluid Intake LOS Diuretics on
Mean Mean this day?

ICUSTAY | Patient-Day

1234

Figure 2-3: Matrix of days for each ICUSTAY. The Patient-Day column indicates
the number of days since admission. The Post-Diuretics Length-Of-Stay or LOS
column indicates the number of days the patient remained in the ICU after the first
diuretics administration, including the first administration day.

example, with the incrementing Patient-Day column indicating the number of days
since admission, beginning at 1. Two ICUSTAYSs are considered to be independent,
even if they record events for the same patient this indicates that the patient has

been in the ICU multiple times.
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2.3.1 Description of Features

After first exploring the data available in MIMIC II we wrote scripts to extract our
new time-series interval features. Our aim with this extraction was to characterize
general patterns in the data and smooth out the very noisy and irregular events from
MIMIC II into a time-series of regular intervals, exposing seasonality, cyclicality and

trending in the each patients record. The features fall into several categories:

e Identification features such as ICUstay and Patient-day are the primary keys
for identifying a row of data. Each tuple of these is unique in the dataset and

represents the interval for which the other features in the row apply.

e Non-temporal features consist of values describing descriptive characteristics of
the patient for the entire ICUstay. They are recorded in each row such that
the row represents a complete snapshot (to permit cross-sectional analysis) but

remain constant for all the patient days in a given ICUstay.

e Temporal features consist of values that change over the interval and across
intervals. For each temporal feature, the value recorded in the data is formed
by querying for all the events (say, medications administered) falling between T
and T-1 24-hour periods since admission to the ICU and computing the mean.
If there are no events occurring in the interval, we record NaN to represent a

null value.

e Exlihauser-related features consist of measurements recorded at hospital admis-
sion, screening for risks affecting patient outcomes. They are recorded as one
overall score and several binaries variables for the presence of each condition.
They are designed to record important comorbidities or conditions present on
admission that are not related directly to the main reason for hospitalization,
but that increase the intensity of resources used or increase the likelihood of a

poor outcome. [4]
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2.3.2 Identifier Variables

Table 2.1 summarizes the identifier variables in the extracted features. ICUstay and

Patient day uniquely identify each row in the dataset.

Name Description

X1 [CUstay ID Unique identifier for
each stay in the ICU.
A single patient may
have several stays, and
therefore have several
IDs

X2 Subject 1D Unique identifier for
each patient

X3 Day in the ICU (Pa- | The days since the
tient day) current ICUstay be-
gan

Table 2.1: Identifier variables and descriptions.
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2.3.3 Non-temporal Variables

Table 2.2 summarizes the non-temporal variables in the extracted features. Non-
temporal variables in the study refer to characteristic information about the patient

and the ICUstay that dont vary across each day in the recorded ICU visit.

e X4, X5, X9 : These features are gathered from the patient demographic table
in MIMIC II based upon subject ID.

e X6, X7 : These two features are compiled by looking for any events of the given
type listed for that ICUstay ID. If there is at least one event on record, we

record a 2 in each row for that ICUstay otherwise we record a 1.

e X8 : Mortality within 30 days is calculated using the timestamp for discharge
from the ICU, and any available listing for date of death. For patients without
any listing, we record 1 for No, and for those with a listing with a difference of

less than 30 days from discharge time we record a 2.

e X10 : Post-Diuretics-Length-Of-Stay is an experimentally specific variable, ex-
pressing the number of patient-days the patient stays in the ICU following the
first treatment of diuretics. It is a number strictly less than or equal to the
number of total patient days for a given ICUSTAY. For a patient discharged
on the same day as they received diuretics for the first time, this value is one.
Note that for D- patients there is no administration and therefore no first ad-
ministration day, so we record NaN for this feature. Later during preparation
for modeling, we impute the administration days for D- patients using one of
the tested sampling techniques, so both D4 and D- patients have values at

modeling time.
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Name

Description

X4

Gender

Encoded as 1 for Male,
and 2 for Female

X5

Ethnicity

Our MIMIC sample
includes 15  spe-
cific racial groups,
in addition to the
following special
categories:  'MULTI
RACE ETHNICITY”,
'OTHER’, '"PATIENT
DECLINED TO
ANSWER’, "UN-
ABLE TO OBTAIN’,
'"UNKNOWN/NOT
SPECIFIED’

X6

Vasopressors
during ICU stay

given

Encoded as 1 for No or
2 for Yes

X7

Ventilation given dur-
ing ICU stay

Encoded as 1 for No or
2 for Yes

X8

Mortality

Mortality within 30
days of the last day
in ICU, with 1 for No
and 2 for Yes

X9

Age

Age of each patient,
recorded in MIMIC at
time of admission

X10

Post Diuretics Length
of Stay given during
ICU stay

Length of Stay in the
ICU after first admin-
istration of diuretics

Table 2.2: Non-temporal Variables and descriptions.
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2.3.4 Temporal Variables

Table 2.3 summarizes the temporal variables in the extracted features. These are
recorded as events in the MIMIC II source data, and are binned into features based

upon the patients start day and day-length time intervals.

e X11 : If there are any diuretics medication events (from the medications table
in MIMIC II) for this day, we record a 2 for yes otherwise we record 1 for an

empty query.

e X12 : From the query for X11 if there are positive results we record the count
of distinct administrations in the query for that day, greater than or equal to 1

administration. For patient days without any administrations, we record NaN.

e X13: This feature is the simple arithmetic difference between Fluid Inputs and
Fluid Outputs (Net Fluid Inputs or (mean(X17) - mean(X16)). This is some
simple feature engineering since Fluids are important features when analyzing

Diuretics administration and patients with Sepsis.

e X14, X15 : Systolic and Diastolic blood pressure averages are recorded sepa-

rately. Each is a mean of all recorded values during the Patient-Day.

e X16, X17 : Fluid Inputs and Outputs are computed by averaging all the input

and output events listed for a particular Patient-Day:.

e X18: Creatinine administered to the patient is averaged across the patient-day

interval, or is listed as zero if there are no recorded administrations.

e X19 : SAPS score to asses the severity patients current condition this is a

temporal variable since it is reassessed daily during the ICUstay. [9]

e X20 : SOFA score to asses the patients organ function this is a temporal

variable that is reassessed for each Patient-Day. [11]
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Name

Description

X11 Diuretics given on this | Encoded as 1 for No or
patient day (binary) 2 for Yes
X12 | Number of times di- | O for none or 4 for four
uretics were given on | times for this patient,
this patient day for this ICU stay, for
this day
X13 | Fluid balance Average | Net  Fluid Inputs
(Fluid Inputs - Fluid
Outputs)
X14 | Diastolic Blood Pres- | Average of values
sure (ABPmean) recorded  over the
patient-day
X15 | Systolic Blood Pres- | Average of values
sure Average (ABP) | recorded over the
patient-day
X16 | Fluid Outputs Aver- | Average of values
age recorded over the
patient-day
X17 | Fluid Inputs Average | Average of values
recorded over the
patient-day
X18 | Creatinine Average Average of values
recorded over the
patient-day
X19 | Simplified Acute | Score  between 0
Physiology Score | and 163 expressing
(SAPS) Score the severity of the
patients condition
X20 | Sequential Organ | Score evaluating the
Failure = Assessment | level of the patients

(SOFA) Score

organ function

Table 2.3: Temporal Variables and descriptions.
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2.3.5 Elixhauser Variables

Table 2.4 summarizes the Elixhauser-related variables in the extracted features. The
Elixhauser Comorbidity Score is a rating expressing the presence of factors contribut-
ing to patient death, independent of the other aspects of the patients condition. [4]
Each of these factors has been empirically demonstrated to correlate with substantial
increases in length of stay, hospital charges, and mortality both for heterogeneous
and homogeneous disease groups. [4] In addition to the overall score, several of the
30 individual components making up the Elixhauser Comorbidity Score that are sus-
pected to have a relationship with Sepsis and its treatment have been included as

binary variables.

e X21 : Score from 0 to 10 expressing concurrent presence of nonmalignant dis-

cases.

o X22 through X30 : Binary variables indicating the concurrent presence of a

specific disease along with the Sepsis we have filtered for in our sample.
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Name

Description

X21 | Elixhauser Comorbid- | Integer from 0 to 10,
ity Score recorded many times
during the patient
stay. If more than one
observation exists for
a patient-day then we
average them
X22 | Elixhauser Comorbid- | -1 for no, 1 for yes,
ity Binaries or ECB (1 | depending on whether
of 9) or not the patient
exhibits ~ Congestive
Heart Failure
X23 | ECB (2 of 9) Cardiac Arrhythmias
X24 | ECB (3 of 9) Valvular Disease
X25 | ECB (4 of 9) Hypertension
X26 | ECB (5 0f9) Diabetes (Uncompli-
cated)
X27 | ECB (6 of 9) Diabetes (Compli-
cated)
X28 | ECB (7 of 9) Renal Failure
X29 | ECB (8 of 9) Liver Disease
X30 | ECB (9 of 9) Obesity

Table 2.4: Elixhauser Variables and descriptions.
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The finalized Patient Data Matrix has these characteristics:

2,341 unique patients

3,503 unique ICU stays

2,807 unique hospital stays

332 unique patients prescribed Diuretics

349 unique ICU stays with Diuretics prescribed

32,678 unique Patient-Days

10,100 Patient-Days within 30 days of mortality

We wrote several robust scripts to extract various groups of features and then
concatenated them into a single matrix. For each variable we then sampled and
checked that the events in the patient record were being binned and summarized
appropriately across the patient days, before finally saving the matrix as a MATLAB
struct. This is a convenient format for later use in our experimental procedure.
Figures 2-4, 2-5 and 2-6 show the distribution for each feature in the set of features
(identifier variables such as ICUstay ID, and Subject ID are excluded). Please refer

to the open source software on Github at the following link for more details:

e github.mit.edu/ALFAGroup/Clinical Time_Series_For_Diuretics_brian_bell

2.3.6 Variable Distributions
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2.4 Experimental procedure: Propensity Scoring

& Matching

With our data matrix constructed, we move on to building a flexible and reusable
experimental procedure to evaluate outcomes for observational study data. For our
Observational Study, its key that we are able to compare and assert that the pa-
tients in the D+ treatment group and D- non-treatment group are similar in terms
of likelihood to receive diuretics. We could achieve this by forming many sub-groups
of patients and evaluating that all features are balanced among the groups. Un-
fortunately, for studies with more than a few features this balance becomes much
more complex and it can also be difficult to achieve in cases where the data has a big
imbalance in count of treatment versus non-treatment cases (like in our dataset). Ad-
ditionally, our studys event-based data makes this balancing much more challenging
because the difference in timing represents a big dimensional increase in the variation
of the patient records, dramatically increasing the feature space to balance, to the

point of being intractable.

Propensity Score Matching, first proposed by Rosenbaum and Rubin in 1984, has
become a widely accepted technique for reducing bias when estimating the impact
of treatment effects in an Observational Study. [1][7][8] It uses statistical modeling
techniques to express the likelihood of a particular patient being assigned to a treat-
ment, across all features. Then we are able to effectively work with observed data
even if the assignment of patients to treatments is not random, and even if there are
important differences in the patient characteristics between the treatment group and

the control.

We will use Propensity Score Matching as our ’typical” observational study model,
and test different non-treatment patient selection and sampling techniques to obtain
class balance findings for each within the model. The next section outlines our pro-

cedure.

37



2.4.1 Experimental Structure

We have employed Rosenbaum and Rubins core approach in the heart of our study.
Their method involves the 4 steps in Bold - the steps before and after are the addi-

tional evaluation, bootstrap and benchmarking steps we perform for this study:

Procedure

Given an initial D+ patient cohort
While num_runs <100

e Step 1: Select D- patient cohort from Study Group
e Step 2: Sample D- cohort to select administration days

e Step 3: Build a propensity model on D+ U D- and select initial
features

e Step 4: Stratify and assess balance (Two-way ANOVA for F-Ratios)
e Step 5: Refine the model (Add features and interactions)

e Step 6: Decide whether the desired balance is achieved or go back
to Step 3

e Step 7: Assign propensity value to each patient in the D+ U D-
cohort. Rank patients by propensity and stratify into quintiles

e Step 8: Save quintile values to a data structure

Step 9: For each quintile, compute its mean over 100 runs
Step 10: Score the mean_quintile using the Class Imbalance Penalty to assess balance

Table 2.5: List of crowd-proposed, self-extracted covariates

Inside Rosenbaum and Rubins procedure is an internal health status balance as-
sessment that performs forward feature selection for a Logistic Regression model.
[2][7] This is a separate goal, and necessary precondition for Class Balance. If the
ANOVA F-Ratio for a feature not in the model is high, then it is added to the model,
and if it remains high then its interactions are also added to the model. The ultimate
health status balance achieved at the end of the procedure (as measured by the Im-
balance Penalty) is a function of the input data and the procedure. By holding the
dataset and procedure constant, we can modify Steps 1 and 2 to test their influence

on the results.

38



Propensity score prediction is performed on the dataset using the binary column
for diuretics administration as Y, and holding out the variable for number of admin-
istrations (which would add serious leakage if left in the model). With the model
fit and scores for each row computed, the patients are stratified into equally sized
quintiles based upon ordinal ranking of scores. The propensity scoring process results
in quintiles that are balanced on features and balanced on the likelihood of diuretics
administration. Stratifications without both Treatment and Non-treatment patients
in each quintile are rejected and the entire process (beginning with D- patient selec-
tion) is re-run until there are both types of patients in each quintile when stratified
by propensity scores. We expect from Rosenbaum and Rubin approximately 90%
reduction in bias for each of the features when we stratify on the quintiles of the pop-
ulation propensity score, so we stratify on our estimated propensity score to achieve
some of this reduction. [7][8] In any particular subclass that is relatively homogenous
based upon propensity score, the distributions of the features are approximately the
same between the treatment and non-treatment groups (approximately so because
the propensity scores are binned rather than being exactly the same). Figure 2-7

illustrates the Rosenbaum and Rubin procedure:

REFINEMENT

BALANCING

v

VARIABLES SELECTION

v

DATA —> | STEPWISE LOGIT MODEL

A

v

STRATA <r‘__‘| BUILDING NEW MODEL

Figure 2-7: Building the Propensity Score model. Figure by Rammazotti [§]
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To reduce the bias in our results, we have repeated the above process (with replace-
ment) 100 times from initial sampling of patients through the collection of quintile
data, and then aggregated the results. Since each run involved selecting D- patients
and sampling, our aggregated results reduce the uncertainty of sampling and give us

more stable imbalance penalty values to compare across techniques.

2.5 Cohort Selection and Sampling Techniques

To obtain our cohort, we need to select comparable non-treatment patients to include
in our propensity scoring, and we need to sample the comparable slice of data for when
each D- patient would have received diuretics. We need to somehow find the precise
slices of D- patient data that we will take as representative cases. Even among the
diuretics patients, there are a lot of rows we shouldnt include in the model. In this
thesis we have considered 2 different methods of patient selection and 3 different
methods for selecting non-treatment patient timepoints; each is described in detail

below.

2.5.1 D- Patient Selection Method 1: Random Selection

The first Patient selection method we use is Random Selection. This is not a selection
of any D- patient in the set. We must exclude patients who have NaNs on their
administration days, and exclude patients with fewer Patient-Days than the sampling
model we have chosen. For example, for median day sampling we are only randomly
sampling from the subset of D- patients who have at least that many patient days,
which is a much smaller set. In the Patient bucket sampling approach, for each D+
patient we will random select one D- patient from the subset who have at least as
many patient days.

By using day-length slices exclusively, random selection treats each day in the
ICUstay record like a fully independent observation, assuming that only the data for
a single day is being used to select patients for treatment. If data across multiple

days is what is actually relevant, then we arent constructing our cohort with matches
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that are comparable based upon the most important factors.

2.5.2 D- Patient Selection Method 2: Fluid Balance Similarity-
Based (FBSB) Selection

Fluid Balance Similarity-Based (FBSB) selection based upon each D+ patients times-
series is the more strict patient selection method we tested. We use Dynamic Time
Warping to measure the nearness of each D- patient to a given D+ patient, based upon
a series of consecutive days Fluid Balance feature (univariate time series approach).
For the lag=A days leading up to first administration of diuretics, we collect the time-
series of Fluid Balance values for each D+ patient, discarding those with missing Fluid
Balance values for this range. Then for each remaining D+ patient, we loop through
all the PDM rows corresponding to D- patients and use a sliding window to find the
optimal match of lag=A sequential days. The DTW scores allow us to select the k
number of patients which show the closest match for the lag=A consecutive days.
Then we select a patient at random from the top k to sample for inclusion in the

cohort.

Unlike random selection, matching based upon time-series has the potential to
account for non-independent patient days. By matching each treatment patient with
a non-treatment patient that shares not only the same pre-diuretics stay length (if
combined with same-day sampling), but also similar statistical makeup in the days
prior, we may be able to achieve a better matching. Selecting how many prior days
to consider is a challenge matching too closely leads to overfitting, and could also
cause us to include confounding data from other overlapping medical conditions (other
than sepsis) that a patient may have during longer ICU stays. For this reason, we
perform a parameter search over number of lag days from 3-5 (parameter A). We also
search over k, the number of patients we randomly select from after recording DTW

similarity scores.

41



2.5.3 D- Patient Sampling Method 1: Median Day Sampling

Collecting features based upon on the median administration day of the Treatment
group is a straightforward way to select timepoints for Non-treatment patients. First,
we collect all treatment patients and add their first diuretics administration to the
propensity scoring dataset. Then we take the median of the patient day column to
find the median day timepoint of administration. Given that the median day for all
diuretics administrations was the 11th day, we sample all non-treatment patients in
our cohort on the 11th day for the propensity scoring dataset. This method doesn’t
take into account how factors such as length of stay may affect the treatment decision.

Sampling Method 2 is designed to take some of these concerns into account.

2.5.4 D- Patient Sampling Method 2: Patient-Day Bucket

Sampling

The length of stay in the ICU might be an important variable when analyzing the
effects of diuretics. A patient that has only been in the ICU for a short while might
have vastly different signals at the time of administration compared with a patient
that has been in the ICU for a long time. If a patient is rushed a diuretic, then
that patient likely has sepsis issues as a primary condition, versus a patient who is
given a diuretic after a few weeks; such a patient may have been admitted to the
ICU with a different condition and slowly developed a sepsis condition later on. By
matching each first-administration day from the Treatment group with a
Non-treatment patient day at the same timepoint (e.g. both sampled on
the 12th day in the ICU), we ensure that any effects of earlier or later adminis-
tration are indeed represented in both the drug and control groups, improving on the
Median day selection in Sampling Method 1. In addition, we also ensure that there
are a wide variety of administration timings in our sample, while keeping the same

distribution between treatment and non-treatment groups.
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2.5.5 D- Patient Sampling Method 3: Gamma Sampling

For this method, we fit a Gamma distribution to the histogram of first-administration
days for D+ patients. With a good fit on the first-administration days, we can take a
sample of timepoints from the distribution, which we will use as the sampling days for
our D- patients. Given N non-treatment patients that have been selected by one of the
patient selection procedures, we select N timepoints from the Gamma distribution.
Looping over the N non-treatment patients, we can sample the first patient on the
day given by the first Gamma timepoint value, sampling the second patient on the
second Gamma value, and so forth. In this way we will approximate the population
distribution of diuretics administration timepoints from the sample of D+ in our
study group, and then ensure that our non-treatment patients administration days

match.

2.6 Measuring our results: Class Imbalance Penalty

To interpret our quintile results quantitatively, we propose the following class imbal-

ance penalty to minimize:

5

Imbalance = ( [[ iq * max(abs(num_D neg - num D pos), jq)l/°
Q =1

for 1 =<i,1=<j

Figure 2-8: Class Imbalance Penalty equation
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This score has several properties that are desirable for this kind of measure-
ment. First, the multiplicative sum will penalize an observation with multiple poorly
class-balanced quintiles more heavily than an observation with a single poorly class-
balanced quintile, even if that single quintiles balance is much worse in terms of
magnitude. This is an important feature, since many poorly balanced quintiles leaves
us with few good ones to extract insights from in a retrospective study. Put another
way, it is better to have 4 excellent quintiles and 1 very poor quintile to exclude from
analysis than to have 5 mediocre quintiles that are of questionable statistical quality.
We intend to design a penalty that we can minimize to identify quintiles that are of
excellent statistical quality for use in retrospective studies. Next, the penalty within
the quintile takes the absolute value of the difference between the D+ and D- treat-
ment, which removes directionality from our metric. Directionality in class-balance
doesnt matter to us since both D- skewed and D+ skewed quintiles will be of low
statistical quality for later analysis. We tested our class imbalance metric numerous
times on varying quintile data, to verify that the relative ranking of excellent to poor

class balance functioned as expected.

There are 2 tunable parameters in this metric, i and J. These two are used to
modulate the penaltys impact for certain kinds of class imbalances. In our work i is
set to 1, but could be increased to widen the distance between observations. i could
also be varied across quintiles to penalize errors in some quintiles more than others,
if a study is primarily concerned with errors on the high or low end of the propensity
score range. An example would be a study concerned with whether the patients who
are most likely to receive treatment are more likely to receive very aggressive and
destructive therapies in comparison to patients with lower propensity scores. For
such a study, we would intend to identify selection and propensity scoring techniques
that produce good quintiles in the upper range, and rank them more highly than

others.

J allows the researcher to set a threshold for how much imbalance they will tolerate
in their study. In studies with very large N, an imbalance in the thousands may not

have any significant effect on the results, so we can rank results like those equally. In

44



this study, we set J to 1 since our N is small and bounded by the number of sepsis
patients with clean data in the MIMIC II dataset. If a researcher has done a variance
analysis and has a known level for statistically significant deviations in the balance of
a particular quintile or of all the quintiles in their study, J can be set to that level to

cleanly differentiate values inside and outside the interval for statistical significance.
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Chapter 3

Results

3.1 Overview

In Chapter 2 we outlined the selection and sampling techniques that we used within
our experimental procedure. In this chapter we present results from 21 bootstrapped
procedural runs, each with a different set of parameters or pair of included techniques.
Each result consists of the counts of treatment and non-treatment patients that fall
in the five quintiles, the value of the Imbalance Penalty for those counts, and the
average Length of Stay and 30-day Mortality of the patients in each treatment-quintile
subgroup (2 x 5). Figure 3.1 shows the Imbalance Penalties for all 21 runs plotted
against each other, and Table 3.1 displays the raw values, ranked from top to bottom

in order of increasing class balance (lower is better).
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Selection  type,
Sampling type

Imbalance
Penalty

Imbalance
Penalty for lag
A=3

Imbalance
Penalty for lag
A=4

Imbalance
Penalty for lag
A=5

Random,  Me-
dian

42.77

FSBS DTW
k=10, Patient-
day Bucket

36.7333

40.0994

39.9688

FSBS DTW
k=20, Patient-
day Bucket

35.7359

38.7192

41.3027

FSBS DTW
k=100, Patient-
day Bucket

35.6175

37.4682

39.7104

FSBS DTW
k=1, Patient-
day Bucket

33.9095

33.7424

32.885

Random,
Patient-day
Bucket

32.5034

FSBS DTW k =

20, Gamma

30.4246

30.2361

26.6094

Random,
Gamma

27.2375

FSBS DTW k =

1, Gamma

20.0551

21.7113

23.2082

Table 3.1: Table of Imbalance Penalty values in order of increasing class balance

48




Class Imbalance For Pairs Of Selection And Sampling Techniques
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Figure 3-1: Plot of Imbalance Penalty scores for all experimental results. Parameter
A refers to the number of consecutive lag days considered in FSBS DTW Selection.
Parameter k refers to the number of closely matched patients considered to be tied
at the end of the selection procedure we randomly select the final cohort of D- from
these k observations.
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Figure 3-2: Fitting a Gamma curve (in red) to the histogram of treatment patient
administration days.
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3.2 Discussion

In our results, we see evidence that better balance is achieved when there is more
randomness in the sampling scheme. If we think of each technique as a step up or
step down in randomness in comparison to its sibling techniques, we can develop an
intuitive understanding for why some schemes produce better balances than others.
In addition we discuss some reasons why we may be seeing these results, interpreted
for the medical context and the complexities of treatment assignment in the clinic in

general.

Before we get to sampling lets first consider our selection techniques. For DTW
k=10,20 and 100, we see penalties trend downward with decreases in lag (we wish
to minimize the penalty). With smaller lags, we are less strict with the fit that
we require, allowing patients to be slightly less similar to each other. Being less
strict with the patient criteria increases the balance, which can be interpreted as an

improvement in selecting comparable patients across risk levels.

This selection pattern actually points to the fact that there may be some real
differences picked up by the model between the D+ and D- patients, but unfortunately
the covariates we would need are probably outside our dataset. If this is the case,
then we might see the same pattern in the inability to achieve balanced quintiles
because the D+ and D- patients are substantively different in a component which has
a pervasive but unclear signal in the dataset i.e. we dont have these other missing

covariates to include in the model to achieve the balance we want.

Also in the DTW results, we see that for k=10, 20 and 100, increases in k generally
lead to lower balance scores across all lag levels. This supports the prior interpretation
that more randomness/less strict selection criteria leads to better balance because
strict selection is finding some real differences that we arent able to account for
in our model. With stricter selection, we find that our D- patient likelihoods of
treatment are distributed too differently from D+ patient likelihoods to compare in

a straightforward way.

Yet another result that supports this interpretation that we are missing a covari-
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ate/randomness performs better is the fact that adding Gamma sampling to pick the
administration day shifts the otherwise-predictable DTW procedures imbalance down
dramatically. Both selection and sampling procedures are ordered according to this
trend and improving randomness leads to consistently superior results compared to

other strategies.

The one big exception in the results is for k=1. With k=1, we see a low balance
score, with seems to shift less in response to changes in lag length. K=1 may perform
differently from the other DTW settings because it is deterministic given a set of D+
patients — for each patient, the 1 D- patient in the set of sliding window samples
that has the minimum error between the D+ and D- is chosen. We could suggest that
choosing the best selection outperforms a random choice from a set of k good samples,
but there is another possible explanation: given that randomness seems to give better
balance than methods which more clearly differentiate the D+ from D- patients, and
as seen in the other DTW methods, higher k (more randomness) gives better results,
perhaps what we are seeing here is overfitting to the point of being very random.
The fact that a given sample produces the closest match is just fitting to noise in the
data — which gives us lower scores in similar vein with how the Gamma distribution
sampling gives better balance results than the Patient-day bucket (we want to be
random enough to fit the larger D+ population over a number of bootstrapped runs,

not exactly fit the sample of D+ patients each and every time).

Comparing sampling techniques, we see that Random selection with Gamma sam-
pling is vastly better than both Patient-day-bucket and Median sampling (and all
non-Gamma DTW runs). In the randomness-is-better worldview, this makes sense
since the Gamma distribution fit is a completely random selection of D- patients,
which are then sampled on days determined by the distribution after it had been fit
to the D+ administration days. It is only surpassed by another Gamma sampling pro-
cedure in our test (FSBS DTW with k=1). The patient-day bucket method is similar
to Gamma, but may be overfitting to the exact sample of D- patients administration
days since it enforces an exact match day-for-day, while the Gamma performs better

because it attempts to model the larger population of D+ patients rather than exactly
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match the sample. The same may be true of the Median sampling technique, which
has the worst balance of any method attempted in this study. Perhaps the variance
in the population sampling days is quite high, so then rigidly enforcing the median is
a very poor way to mimic realistic sampling.

Our results suggest that the sampling day choice is very significant for achieving
balance. The Median is the worst-fit for sampling day and shows the worst results
overall across all methods. Meanwhile the Gamma fit ought to be among the best for
sampling the administration day and we see that it shows the best overall, for both
FSBS DTW and for Random selection. The DTW /Patient-day and Random /Patient-
day bucket runs both fit to the sample of D+ patients observation-for-observation and
show middling results, while the same DTW selection with Gamma sampling shows
excellent performance for both k values tested. The ordering of the results follows the
ordering of sampling techniques, and switching the selection technique gives a smaller

magnitude change in performance compared with switching the sampling technique.

What do these results mean in a medical context? In the clinic, doctors assign
treatments in psuedo-random ways. Evidence shows that simply varying the care
provider may significantly influence treatment decisions, timing, and outcomes after
controlling for confounding factors. [10] A previous study also concluded that physi-
cian’s differing knowledge and opinions may have significant outcome effects, and that
the physician should be modeled as part of the overall problem. [6] Given that two
different doctors may see the same patient, but differ in their diagnosis or administra-
tion of diuretics, its not surprising that we find that we are able to model the results
best when we select in more random ways. Said another way, the patient may be
given or not given the treatment based upon the random assignment of doctor, so the
physician ID is a crucial variable we are missing. In addition, the same doctor may
change their opinions and decisions overtime as they see noteworthy cases, in some
sense overfitting to their own sample, but only affecting the treatment of subsequent

patients.

It is telling that the results seem to be ordered based upon how the patients

administration days are sampled, and the greater effect of sampling compared to
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selection on imbalance. The strong influence of sampling day is very likely related

to the circumstances of our study setting: patients are admitted to the ICU for any

number of reasons, and may have developed sepsis while already in the ICU. Many

of the patients in our study have significant pre-conditions which caused them to be

admitted to the ICU (sepsis may be a secondary diagnosis) and these conditions are

both serious enough to put them into the ICU and only crudely approximated by

covariates like the Elixhauser comorbidity score. More randomness in the sampling

procedure is a better approximation for how diuretics are actually administered in the

hospital: somewhat randomly, based upon preconditions, assignment to physicians,

and inconsistent evaluation criteria.

3.3 Experimental Results

3.3.1 Random Selection, Median Sampling

Median Day selection for 100 loops

Treatment | Q1 Q2 Q3 Q4 Q5 Totals
0 4.3400 84.600 92.1200 80.6700 56.2700 318

1 123.6600 42.4000 34.8800 46.3300 70.7300 318
Totals 128 127 127 127 127 636
Balance 42.770

Score

Table 3.2: Quintiles - Random Selection, Median Sampling

Treatment | LOS Q1 LOS Q2 LOS Q3 LOS Q4 LOS Q5
0 NaN 7.1388 8.1089 8.9593 9.4173
1 17.5891 11.2570 15.2871 13.9724 14.5147
Mean NaN 9.1979 11.698 11.4659 11.966

Table 3.3: LOS - Random Selection, Median Sampling
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Treatment | MOR Q1 MOR Q2 MOR Q3 MOR Q4 MOR Q5
0 NaN 0.2589 0.3066 0.3727 0.4197

1 0.3241 0.3380 0.3940 0.3810 0.3983
Mean NaN 0.2985 0.3503 0.3769 0.409

Table 3.4: Mortality - Random Selection, Median Sampling
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3.3.2 Random Selection, Patient-Day Sampling

Patient Day selection for 100 loops

Treatment | Q1 Q2 Q3 Q4 Q5 Totals
0 19.6400 93.4500 83.2600 67.9200 53.7300 318

1 108.3600 33.5500 43.7400 59.0800 73.2700 318
Totals 128 127 127 127 127 636
Balance 32.5034

Score

Table 3.5: Quintiles - Random Selection, Patient Day Sampling

Treatment | LOS Q1 LOS Q2 LOS Q3 LOS Q4 LOS Q5
0 9.3591 7.5019 8.6239 9.0622 9.8048

1 16.3745 12.5455 14.7165 15.2783 15.2927
Mean 12.8668 10.0237 11.6702 12.1703 12.5488

Table 3.6: LOS - Random Selection, Patient Day Sampling

Treatment | MOR Q1 MOR Q2 MOR Q3 MOR Q4 MOR Q5
0 0.4183 0.2509 0.2960 0.3474 0.3677
1 0.3664 0.2229 0.2802 0.3914 0.4287
Mean 0.3924 0.2369 0.2881 0.3694 0.3982

Table 3.7: Mortality - Random Selection, Patient Day Sampling
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3.3.3 DTW Sliding KNN Selection, Patient-Day Sampling k

=1

DTW Sliding KNN Selection for 100 loops (lag=>5, k=1)

Treatment | Q1 Q2 Q3 Q4 Q5 Totals
0 27.00 80.50 56.50 38.00 29.00 231
1 74.50 19.00 43.00 61.50 70.50 268.5
Totals 101.5 99.5 99.5 99.5 99.5 499.5
Balance 32.885
Score
Table 3.8: Quintiles - DTW KNN (lag=5, k=1)

Treatment | LOS Q1 LOS Q2 LOS Q3 LOS Q4 LOS Q5

0 11.487 5.6297 11.3739 11.3684 12.6223

1 15.7675 11.5833 12.1405 15.7879 15.6023

Mean 13.6273 8.6065 11.7572 13.5782 14.1123

Table 3.9: LOS - DTW KNN (lag=5, k=1)

Treatment | MOR Q1 MOR Q2 MOR Q3 MOR Q4 MOR Q5

0 0.2771 0.0372 0.1795 0.2500 0.3359

1 0.4549 0.2361 0.2771 0.3414 0.4231

Mean 0.366 0.1367 0.2283 0.2957 0.3795

Table 3.10: Mortality - DTW KNN (lag=5, k=1)
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DTW Sliding KNN Selection for 100 loops (lag=4, k=1)

Treatment | Q1 Q2 Q3 Q4 Q5 Totals
0 19.5 78.00 62.50 42.50 33.00 235.5
1 82.00 21.50 37.00 57.00 66.50 264
Totals 101.5 99.5 99.5 99.5 99.5 499.5
Balance 33.7424
Score
Table 3.11: Quintiles - DTW KNN (lag=4, k=1)

Treatment | LOS Q1 LOS Q2 LOS Q3 LOS Q4 LOS Q5

0 9.6395 9.0314 9.6414 11.0557 10.9081

1 14.4631 14.7412 14.7838 15.4259 15.0791

Mean 12.0513 11.8863 12.2126 13.2408 12.9936

Table 3.12: LOS - DTW KNN (lag=4, k=1)

Treatment | MOR Q1 MOR Q2 MOR Q3 MOR Q4 MOR Q5

0 0.3842 0.1094 0.1758 0.4008 0.3943

1 0.4571 0.1414 0.3243 0.3296 0.4500

Mean 0.4206 0.1254 0.2501 0.3652 0.42215

Table 3.13: Mortality - DTW KNN (lag=4, k=1)
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DTW Sliding KNN Selection for 100 loops (lag=3, k=1)

Treatment | Q1 Q2 Q3 Q4 Q5 Totals
0 27.50 78.50 57.50 32.50 34.50 230.5
1 74.50 20.00 41.00 66.00 64.00 265.5
Totals 102.0 98.5 98.5 98.5 98.5 496.0
Balance 33.9095
Score
Table 3.14: Quintiles - DTW KNN (lag=3, k=1)

Treatment | LOS Q1 LOS Q2 LOS Q3 LOS Q4 LOS Q5

0 7.9033 8.3818 8.5537 12.3238 10.2786

1 14.5570 11.0750 15.0854 15.2785 15.2074

Mean 11.2302 9.7284 11.8196 13.8012 12.743

Table 3.15: LOS - DTW KNN (lag=3, k=1)

Treatment | MOR Q1 MOR Q2 MOR Q3 MOR Q4 MOR Q5

0 0.2767 0.1337 0.2433 0.2762 0.3777

1 0.4568 0.3000 0.2439 0.3125 0.4847

Mean 0.36675 0.21685 0.2436 0.2944 0.4312

Table 3.16: Mortality - DTW KNN (lag=3, k=1)
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3.3.4 DTW Sliding KNN Selection, Patient-Day Sampling k

=10

DTW Sliding KNN Selection for 100 loops (lag=>5, k=10)

Treatment | Q1 Q2 Q3 Q4 Q5 Totals
0 25.2200 90.5300 77.9400 63.6300 40.0700 297.39
1 87.0100 19.7600 32.3500 46.6600 70.2200 256
Totals 112.123 110.29 110.29 110.29 110.29 553.39
Balance 39.9688
Score
Table 3.17: Quintiles - DTW KNN (lag=5, k=10)

Treatment | LOS Q1 LOS Q2 LOS Q3 LOS Q4 LOS Q5

0 8.0482 6.6644 6.2519 7.1738 8.1898

1 15.7117 14.5676 12.8737 14.9575 14.8806

Mean 11.880 10.616 9.5628 11.0657 11.5352

Table 3.18: LOS - DTW KNN (lag=5, k=10)

Treatment | MOR Q1 MOR Q2 MOR Q3 MOR Q4 MOR Q5

0 0.4396 0.1180 0.1730 0.2543 0.3245

1 0.4631 0.2280 0.2613 0.4008 0.3587

Mean 0.4514 0.173 0.2171 0.3276 0.3416

Table 3.19: Mortality - DTW KNN (lag=5, k=10)
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DTW Sliding KNN Selection for 100 loops (lag=4, k=10)

Treatment | Q1 Q2 Q3 Q4 Q5 Totals
0 26.1200 90.4900 77.4700 63.8500 39.4600 297.39
1 86.1900 19.7800 32.8000 46.4200 70.8100 256
Totals 112.31 110.27 110.27 110.27 110.27 553.39
Balance 40.0994
Score
Table 3.20: Quintiles - DTW KNN (lag=4, k=10)

Treatment | LOS Q1 LOS Q2 LOS Q3 LOS Q4 LOS Q5

0 7.9097 6.7577 6.1272 7.1692 8.4025

1 15.6664 15.1871 12.7955 14.6762 14.9731

Mean 11.7881 10.9724 9.4614 10.9227 11.6878

Table 3.21: LOS - DTW KNN (lag=4, k=10)

Treatment | MOR Q1 MOR Q2 MOR Q3 MOR Q4 MOR Q5

0 0.4235 0.1162 0.1808 0.2508 0.3334

1 0.4666 0.2081 0.2658 0.3970 0.3606

Mean 0.4451 0.1622 0.2233 0.3239 0.347

Table 3.22: Mortality - DTW KNN (lag=4, k=10)
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DTW Sliding KNN Selection for 100 loops (lag=3, k=10)

Treatment | Q1 Q2 Q3 Q4 Q5 Totals
0 27.2500 87.3700 75.8000 62.4900 40.8400 297.39
1 84.1400 22.2200 33.7900 47.1000 68.7500 256
Totals 111.39 109.59 109.59 109.59 109.59 549.75
Balance 36.7333
Score
Table 3.23: Quintiles - DTW KNN (lag=3, k=10)

Treatment | LOS Q1 LOS Q2 LOS Q3 LOS Q4 LOS Q5

0 7.6368 6.5729 6.7216 7.9647 8.5307

1 16.0547 13.8960 13.1424 14.0822 15.1833

Mean 11.8458 10.2345 9.932 11.0235 11.857

Table 3.24: LOS - DTW KNN (lag=3, k=10)

Treatment | MOR Q1 MOR Q2 MOR Q3 MOR Q4 MOR Q5

0 0.4393 0.0918 0.1590 0.2564 0.3238

1 0.4861 0.1624 0.2633 0.3984 0.3610

Mean 0.4627 0.1271 0.2112 0.3274 0.3424

Table 3.25: Mortality - DTW KNN (lag=3, k=10)
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3.3.5 DTW Sliding KNN Selection, Patient-Day Sampling k

= 20

DTW Sliding KNN Selection for 100 loops (lag=>5, k=20)

Treatment | Q1 Q2 Q3 Q4 Q5 Totals
0 25.44 87.43 78.63 66.37 40.65 298.52
1 87.00 23.09 31.89 44.15 69.87 256.0
Totals 112.44 110.52 110.52 110.52 110.52 5954.52
Balance 41.3027
Score
Table 3.26: Quintiles - DTW KNN (lag=5, k=20)

Treatment | LOS Q1 LOS Q2 LOS Q3 LOS Q4 LOS Q5

0 7.4793 7.5384 6.4885 7.3945 8.1202

1 15.2045 16.2707 12.5663 15.4497 14.7366

Mean 11.3419 11.9046 9.5274 11.4221 11.4284

Table 3.27: LOS - DTW KNN (lag=5, k=20)

Treatment | MOR Q1 MOR Q2 MOR Q3 MOR Q4 MOR Q5

0 0.4235 0.1316 0.1532 0.2038 0.3041

1 0.4905 0.2101 0.2865 0.3899 0.3320

Mean 0.4570 0.1709 0.2199 0.2969 0.3181

Table 3.28: Mortality - DTW KNN (lag=5, k=20)
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DTW Sliding KNN Selection for 100 loops (lag=4, k=20)

Treatment | Q1 Q2 Q3 Q4 Q5 Totals
0 26.53 86.44 76.81 66.16 42.80 298.74
1 86.13 24.08 33.71 44.36 67.72 256.00
Totals 112.66 110.52 110.52 110.52 110.52 554.74
Balance 38.7192
Score
Table 3.29: Quintiles - DTW KNN (lag=4, k=20)

Treatment | LOS Q1 LOS Q2 LOS Q3 LOS Q4 LOS Q5

0 7.2046 7.4306 7.0458 7.8608 8.3544

1 15.4672 14.8185 13.1088 15.5117 14.6441

Mean 11.3359 11.1246 10.0773 11.6863 11.4993

Table 3.30: LOS - DTW KNN (lag=4, k=20)

Treatment | MOR Q1 MOR Q2 MOR Q3 MOR Q4 MOR Q5

0 0.4149 0.1310 0.1635 0.2169 0.2850

1 0.4962 0.2063 0.3052 0.3872 0.3224

Mean 0.4556 0.16865 0.23435 0.30205 0.3037

Table 3.31: Mortality - DTW KNN (lag=4, k=20)
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DTW Sliding KNN Selection for 100 loops (lag=3, k=20)

Treatment | Q1 Q2 Q3 Q4 Q5 Totals
0 28.50 85.57 76.91 63.22 42.85 297.05
1 83.67 24.65 33.31 47.00 67.37 256.0
Totals 112.17 110.22 110.22 110.22 110.22 553.05
Balance 35.7359
Score
Table 3.32: Quintiles - DTW KNN (lag=3, k=20)

Treatment | LOS Q1 LOS Q2 LOS Q3 LOS Q4 LOS Q5

0 6.7148 7.3655 7.1231 7.9791 8.5633

1 15.2830 14.1629 13.5118 15.00 15.2797

Mean 10.9989 10.7642 10.3175 11.4896 11.9215

Table 3.33: LOS - DTW KNN (lag=3, k=20)

Treatment | MOR Q1 MOR Q2 MOR Q3 MOR Q4 MOR Q5

0 0.4270 0.1180 0.1542 0.2374 0.2912

1 0.4895 0.1827 0.2956 0.4025 0.3387

Mean 0.45825 0.1503 0.2249 0.31995 0.31495

Table 3.34: Mortality - DTW KNN (lag=3, k=20)
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3.3.6 DTW Sliding KNN Selection, Patient-Day Sampling k

= 100

DTW Sliding KNN Selection for 100 loops (lag=5, k=100)

Treatment | Q1 Q2 Q3 Q4 Q5 Totals
0 22.22 91.25 74.42 65.05 42.12 295.06
1 89.44 18.60 35.43 44.80 67.73 256.0
Totals 111.66 109.85 109.85 109.85 109.85 551.06
Balance 39.7104
Score
Table 3.35: Quintiles - DTW KNN (lag=5, k=100)

Treatment | LOS Q1 LOS Q2 LOS Q3 LOS Q4 LOS Q5

0 7.1924 12.2795 9.6569 8.2640 8.0489

1 15.4171 18.7420 14.2674 12.7498 14.9097

Mean 11.30475 15.5108 11.96215 10.5069 11.4793

Table 3.36: LOS - DTW KNN (lag=5, k=100)

Treatment | MOR Q1 MOR Q2 MOR Q3 MOR Q4 MOR Q5

0 0.4137 0.1182 0.2128 0.2461 0.2904

1 0.4835 0.2016 0.2016 0.3632 0.3939

Mean 0.4486 0.1599 0.2072 0.30465 0.34215

Table 3.37: Mortality - DTW KNN (lag=5, k=100)
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DTW Sliding KNN Selection for 100 loops (lag=4, k=100)

Treatment | Q1 Q2 Q3 Q4 Q5 Totals
0 24.67 89.10 73.20 64.17 42.32 293.46
1 86.83 20.39 36.29 45.32 67.17 256.0
Totals 111.5 109.49 109.49 109.49 109.49 549.46
Balance 37.4682
Score
Table 3.38: Quintiles - DTW KNN (lag=4, k=100)

Treatment | LOS Q1 LOS Q2 LOS Q3 LOS Q4 LOS Q5

0 7.3111 12.3164 9.3260 8.2009 7.9107

1 15.3751 18.2712 14.2527 12.8592 14.9620

Mean 11.3431 15.2938 11.78935 10.5301 11.4364

Table 3.39: LOS - DTW KNN (lag=4, k=100)

Treatment | MOR Q1 MOR Q2 MOR Q3 MOR Q4 MOR Q5

0 0.4167 0.1476 0.2158 0.2507 0.2756

1 0.4856 0.2006 0.2004 0.3717 0.3964

Mean 0.45115 0.1741 0.2081 0.3112 0.3360

Table 3.40: Mortality - DTW KNN (lag=4, k=100)
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DTW Sliding KNN Selection for 100 loops (lag=3, k=100)

Treatment | Q1 Q2 Q3 Q4 Q5 Totals
0 27.82 86.72 72.71 64.09 42.73 294.07
1 83.77 22.90 36.91 45.53 66.89 256.0
Totals 111.59 109.62 109.62 109.62 109.62 550.07
Balance 35.6175
Score
Table 3.41: Quintiles - DTW KNN (lag=3, k=100)

Treatment | LOS Q1 LOS Q2 LOS Q3 LOS Q4 LOS Q5

0 7.4824 11.6767 8.9106 8.1565 7.8589

1 15.5291 16.2324 14.4464 12.8036 15.2996

Mean 11.5057 13.95455 11.6785 10.4800 11.57925

Table 3.42: LOS - DTW KNN (lag=3, k=100)

Treatment | MOR Q1 MOR Q2 MOR Q3 MOR Q4 MOR Q5

0 0.4280 0.1355 0.2275 0.2506 0.3125

1 0.4883 0.1684 0.2360 0.3795 0.3939

Mean 0.45815 0.15195 0.23175 0.31505 0.3532

Table 3.43: Mortality - DTW KNN (lag=3, k=100)
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3.3.7 Random Selection, Gamma Distribution Sampling

Gamma Distribution Sampling for 100 loops

Treatment | Q1 Q2 Q3 Q4 Q5 Totals
0 69.72 88.14 73.37 52.26 33.79 317.28
1 58.2 38.7 53.47 74.58 93.05 318.0
Totals 127.92 126.84 126.84 126.84 126.84 635.28
Balance 27.2375

Score

Table 3.44: Quintiles - Random Selection, Gamma Distribution Sampling

Treatment | LOS Q1 LOS Q2 LOS Q3 LOS Q4 LOS Q5
0 9.5445 8.4369 9.4883 8.9087 8.5752

1 16.7992 13.8703 14.5682 15.0555 15.5426
Mean 13.1719 11.1536 12.02825 11.9821 12.0589

Table 3.45: LOS - Random Selection, Gamma Distribution Sampling

Treatment | MOR Q1 MOR Q2 MOR Q3 MOR Q4 MOR Q5
0 0.3370 0.2708 0.2973 0.3407 0.3797
1 0.2807 0.2409 0.3113 0.4120 0.4377
Mean 0.30885 0.25585 0.3043 0.3763 0.4087

Table 3.46: Mortality - Random Selection, Gamma Distribution Sampling

69




3.3.8 DTW Sliding KNN Selection, Gamma Distribution Sam-

pling k = 20

DTW Sliding KNN Selection, Gamma Distribution Sampling for 100 loops (lag=5,

k=20)
Treatment | Q1 Q2 Q3 Q4 Q5 Totals
0 30.74 81.39 70.34 55.94 42.09 280.50
1 76.24 23.66 34.71 49.11 62.96 246.68
Totals 106.98 105.05 105.05 105.05 105.05 527.18
Balance 26.6094
Score
Table 3.47: Quintiles - DTW KNN Gamma (lag=5, k=20)

Treatment | LOS Q1 LOS Q2 LOS Q3 LOS Q4 LOS Q5

0 14.0633 11.0149 12.1528 15.4714 18.0658

1 15.0712 12.9009 15.0189 15.5030 15.4294

Mean 14.5673 11.9579 13.5859 15.4872 16.7476

Table 3.48: LOS - DTW KNN Gamma (lag=5, k=20)

Treatment | MOR Q1 MOR Q2 MOR Q3 MOR Q4 MOR Q5

0 0.3400 0.1364 0.1668 0.2364 0.2671

1 0.4664 0.2237 0.2869 0.3206 0.3961

Mean 0.4032 0.1801 0.2269 0.2785 0.3316

Table 3.49: Mortality - DTW KNN Gamma (lag=5, k=20)
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DTW Sliding KNN Selection, Gamma Distribution Sampling for 100 loops (lag=4,

k=20)
Treatment | Q1 Q2 Q3 Q4 Q5 Totals
0 30.26 80.75 70.49 58.86 41.73 282.09
1 77.33 24.71 34.97 46.60 63.73 247.34
Totals 107.59 105.46 105.46 105.46 105.46 529.43
Balance 30.2361
Score
Table 3.50: Quintiles - DTW KNN Gamma (lag=4, k=20)

Treatment | LOS Q1 LOS Q2 LOS Q3 LOS Q4 LOS Q5

0 13.4753 11.1939 12.5986 15.8599 16.7457

1 15.0578 12.3544 15.7088 14.9584 15.7092

Mean 14.2666 11.7742 14.1537 15.4092 16.2275

Table 3.51: LOS - DTW KNN Gamma (lag=4, k=20)

Treatment | MOR Q1 | MOR Q2 | MOR Q3 | MOR Q4 | MOR Q5

0 0.3424 0.1392 0.1769 0.2273 0.2689

1 0.4702 0.2034 0.2867 0.3377 0.3841

Mean 0.4063 0.1713 0.2318 0.2825 0.3265

Table 3.52: Mortality - DTW KNN Gamma (lag=4, k=20)
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DTW Sliding KNN Selection, Gamma Distribution Sampling for 100 loops (lag=3,

k=20)
Treatment | Q1 Q2 Q3 Q4 Q5 Totals
0 29.63 81.23 69.82 58.81 41.42 280.91
1 77.99 24.16 35.57 46.58 63.97 248.27
Totals 107.62 105.39 105.39 105.39 105.39 529.18
Balance 30.4246
Score
Table 3.53: Quintiles - DTW KNN Gamma (lag=3, k=20)

Treatment | LOS Q1 LOS Q2 LOS Q3 LOS Q4 LOS Q5

0 13.0138 10.9366 13.1595 16.6766 16.7075

1 15.2058 11.6706 15.5358 15.0552 15.6676

Mean 14.1098 11.3036 14.3477 15.8659 16.1876

Table 3.54: LOS - DTW KNN Gamma (lag=3, k=20)

Treatment | MOR Q1 | MOR Q2 | MOR Q3 | MOR Q4 | MOR Q5

0 0.3715 0.1473 0.1733 0.2319 0.2736

1 0.4678 0.2084 0.2801 0.3467 0.3872

Mean 0.4197 0.1779 0.2267 0.2893 0.3304

Table 3.55: Mortality - DTW KNN Gamma (lag=3, k=20)
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3.3.9 DTW Sliding KNN Selection, Gamma Distribution Sam-

pling k = 1

DTW Sliding KNN Selection, Gamma Distribution Sampling for 100 loops (lag=5,

k=1)
Treatment | Q1 Q2 Q3 Q4 Q5 Totals
0 14.68 56.42 44.49 32.69 23.73 172.01
1 62.37 18.76 30.69 42.49 51.45 205.76
Totals 77.05 75.18 75.18 75.18 75.18 377.77
Balance 23.2082
Score
Table 3.56: Quintiles - DTW KNN Gamma (lag=5, k=1)

Treatment | LOS Q1 LOS Q2 LOS Q3 LOS Q4 LOS Q5

0 12.0145 9.1422 8.9191 10.0417 10.9814

1 15.4009 13.2308 14.6591 15.7964 15.7827

Mean 13.7077 11.1865 11.7891 12.9191 13.3821

Table 3.57: LOS - DTW KNN Gamma (lag=5, k=1)

Treatment | MOR Q1 MOR Q2 MOR Q3 MOR Q4 MOR Q5

0 0.3595 0.1530 0.1933 0.2764 0.3122

1 0.4212 0.2290 0.2733 0.3279 0.3979

Mean 0.3903 0.1910 0.2333 0.3022 0.3550

Table 3.58: Mortality - DTW KNN Gamma (lag=5, k=1)

73




DTW Sliding KNN Selection, Gamma Distribution Sampling for 100 loops (lag=4,

k=1)
Treatment | Q1 Q2 Q3 Q4 Q5 Totals
0 16.48 56.47 44.02 33.70 24.03 174.70
1 61.42 19.64 32.09 42.41 52.08 207.64
Totals 77.90 76.11 76.11 76.11 76.11 382.34
Balance 21.7113
Score
Table 3.59: Quintiles - DTW KNN Gamma (lag=4, k=1)

Treatment | LOS Q1 LOS Q2 LOS Q3 LOS Q4 LOS Q5

0 11.6509 9.5520 8.6210 10.3951 10.5056

1 15.8760 13.7004 14.5218 15.4692 16.1794

Mean 14.2 11.7 14.1 154 16.2

Table 3.60: LOS - DTW KNN Gamma (lag=4, k=1)

Treatment | MOR Q1 MOR Q2 MOR Q3 MOR Q4 MOR Q5

0 0.3439 0.1502 0.1916 0.2703 0.3233

1 0.4343 0.2095 0.2544 0.3237 0.3845

Mean 0.4 0.1 0.2 0.2 0.3

Table 3.61: Mortality - DTW KNN Gamma (lag=4, k=1)
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DTW Sliding KNN Selection, Gamma Distribution Sampling for 100 loops (lag=3,

k=1)
Treatment | Q1 Q2 Q3 Q4 Q5 Totals
0 15.83 54.58 42.65 33.61 24.12 170.79
1 60.86 20.05 31.98 41.02 50.51 204.42
Totals 76.69 74.63 74.63 74.63 74.63 375.21
Balance 20.0551
Score
Table 3.62: Quintiles - DTW KNN Gamma (lag=3, k=1)

Treatment | LOS Q1 LOS Q2 LOS Q3 LOS Q4 LOS Q5

0 11.7924 10.3545 8.9622 10.1732 10.8221

1 15.2749 13.6663 14.9963 15.4726 15.7023

Mean 13.5337 12.0104 11.9793 12.8229 13.2622

Table 3.63: LOS - DTW KNN Gamma (lag=3, k=1)

Treatment | MOR Q1 MOR Q2 | MOR Q3 | MOR Q4 | MOR Q5

0 0.3627 0.1597 0.1978 0.2649 0.3136

1 0.4232 0.2132 0.2582 0.3150 0.3846

Mean 0.3930 0.1865 0.2280 0.2900 0.3491

Table 3.64: Mortality - DTW KNN Gamma (lag=3, k=1)
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Chapter 4

Research Findings and

Contributions

4.1 Research Findings and Contributions
This thesis demonstrates the following methods for clinical time-series data:

e An effective representation for standardizing event-driven and irregular data us-
ing smoothing on days, taking mean and median for each variable, for each day.
This makes previously incomparable observations comparable despite different

timing and events.

e Development of two selection and three sampling techniques for preparing ret-
rospective studies on irregular time-series data, and software for performing
bootstrap iterations for combinations of techniques. We found that using a
Fluid-Balance Similarity-Based Dynamic Time Warp selection procedure with
nearest neighbor parameter k=1 and using a Gamma distribution for sampling
days produced consistently better class balance than all other methods when

bootstrapped over 100 independent runs.

e Development of the Class Imbalance Penalty, a class balance metric for selecting

quintiles for statistically sound comparisons, which enables relative ranking of
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stratified matching procedures. We have demonstrated that it gives low scores
for the procedures that produce the most class-balanced quintile results for all

strata and lend themselves to statistically sound future analysis.

From our retrospective study on Diuretics treatment effects for Sepsis patients,

we demonstrate the following findings, which hold for our study’s context:

e Analysis and findings showing that sampling had a stronger effect on class
balance than selection, and using a Gamma distribution fit to pick sampling
days produced more statistically comparable quintiles than all other methods,

for any selection procedure.

e Analysis and findings showing that Fluid-Balance Similarity-Based DTW selec-
tion with k=1 and lag=3 in combination with Gamma distribution sampling is
the best combination among the tested methods, but purely Random sampling

outperforms it for many values of k.

e Analysis and findings strongly suggesting that physician and provider data are

key missing covariates for predicting Diuretics administration in the ICU

4.2 Software

e We have written, documented and published open source MATLAB code at
github.mit.edu/ALFAGroup/Clinical_Time_Series_For_Diuretics_brian_bell for each

selection and sampling technique, along with our bootstrap test.

4.3 Future work

e We strongly suspect that the addition of physician-related covariates would
improve the balance seen for our characteristic problem. We should confirm

that the relative performance of the techniques tested still holds.

e Re-implement the experimental procedure code in Python to better architect

the system and improve readability and modularity.
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e Try more flexible modeling approaches, including non-linear techniques such as
Decision Trees, which may be better able to accurately score, and by extension

produce better balance across quintiles. [12]
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Chapter 5

Glossary

Balanced Quintiles

The desired end-goal state of Rosenbaum and Rubins Propensity Score Matching
Procedure. During Propensity Score Matching, a statistical model is trained upon
a set of covariates that may include confounding variables, and a treatment/non-
treatment variable as the response. The models prediction form 0-1 is an approximate

measure of the likelihood of treatment.

Cohort

The cohort is a sample of larger Study Group, considered for a single experiment. It

consists of approximately equal numbers of treatment and non-treatment patients.

Cohort Selection

We call the act of picking representative non-treatment observations from the Study

Group to match a set of treatment observations Cohort Selection.
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Diuretics

A class of Medical drugs given to treat Sepsis patients. Typically given via IV, they

cause patients to release excess fluids, helping them reduce systemic inflammation.

Length of Stay

Given that a patient has been in the ICU for a least 24 hours (a criteria to be in the
study group), Length of Stay expresses the number of days the patient has spent in
the ICU, expressed as a ceiling. So a patient who has been in the ICU for 30 hours
has a Length-of-Stay of 2 days.

Logistic Regression

A modeling technique proposed by Cox in 1958, used primarily as an alternative to
early techniques such as linear regression or additive models when predicting a cat-
egorical response, especially a binary one. [2|Because the logistic function resembles
a step function, it mainly produces values toward the endpoints of the range from

0.0-1.0 and so it makes for a natural fit for binary classification problems.

Propensity Score Matching

Statistical technique used to analyze a particular intervention by accounting for bias
due to confounding variables. In particular, it helps address situations where the
outcome may actually be linked to the characteristics that influenced the treatment
decision, when in fact we want to isolate the effect of the treatment. By mimick-
ing randomized assignment by creating cohorts that are comparable on all observed

covariates, we can address concerns of systemic bias.

82



Sepsis

Medical condition described as severe full body inflammation in response to a serious
infection. Patients diagnosed with sepsis suffer from a long list of symptoms: very

low blood pressure and heart racing, swelling, flushing, fever and hyperventilation.

Study Group

The set of all Sepsis patients gathered from MIMIC with at least 24 hours stay in the
ICU.

Thirty Day Mortality

Given a set of patients who have been in the ICU for at least 24 hours and subsequently
released, 30-day mortality is the population mean for the proportion of the original set
of patients who die within 30 days of their release from the hospital. It is a common

quality-of-care metric, with better healthcare centers showing lower rates.

Time Series

A genre of modeling problems involving covariates that change upon one or more
dimensions, including time. Examples of this kind of signal abound in the medical
field, such as a log of a patients heart rate each minute, accumulated across multiple
days. Modeling this data can be challenging because it must often incorporate data
from different time scales (mixing daily data with hourly data for example), non time-
bound data, and also the influence of previous days information in each time-varying
signal. While other kinds of modeling problems can be tackled with a lenient eye
toward concerns for the independence of each observation from the other observations,

time-series data is often very strongly dependent on prior observations.
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