
Extensions to Behavioral Genetic Programming

by

Steven B. Fine

S.B., Massachusetts Institute of Technology (2016)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2017

c○ Massachusetts Institute of Technology 2017. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

February 3, 2017

Certified by. .
Una-May O’Reilly

Principal Research Scientist, MIT CSAIL
Thesis Supervisor

Accepted by .
Christopher J. Terman

Chairman, Master of Engineering Thesis Committee

2

Extensions to Behavioral Genetic Programming

by

Steven B. Fine

Submitted to the Department of Electrical Engineering and Computer Science
on February 3, 2017, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

In this work I introduce genetic programming [5] as a general technique to produce
programs with arbitrary behavior. I discuss genetic programming and its application
the task of symbolic regression. I introduce behavioral genetic programming [6] as an
extension to genetic programming and explore various extensions to it. The codebase
that I build is made sufficiently flexible to easily accommodate future adaptions to
the behavioral genetic programming methodology. I test the performance of the
implementation of behavioral genetic programming along with several extensions.

Thesis Supervisor: Una-May O’Reilly
Title: Principal Research Scientist, MIT CSAIL

3

4

Acknowledgments

I would like to thank Una-May O’Reilly for all of her guidance throughout this re-

search project. Not only did she help me find a project that interested me, but our

discussions were instrumental for the progression of my research. I would also like

to thank Krzysztof Krawiec for our discussion on possible extensions to behavioral

genetic programming, and for answering my questions about the original implementa-

tion. Finally, I would like to thank Erik Hemberg for all of the help he provided me in

getting my experiments up and running on the CSAIL cloud, and for our discussions

about my experimental results.

5

6

Contents

1 Introduction 13

2 Related Work 15

2.1 Basics of Genetic Programming . 15

2.1.1 Program Representations . 15

2.1.2 Generating New Programs . 16

2.1.3 Choosing Programs to Survive 17

2.1.4 Termination . 17

2.2 Behavioral Genetic Programming . 17

2.2.1 Trace . 18

2.2.2 Model . 19

3 Implementation 21

3.1 Codebase . 21

3.2 Genetic Programming Run . 21

3.2.1 Initialization . 22

3.2.2 Reproduction . 22

3.2.3 Evaluation . 23

3.2.4 Survival . 27

3.3 Extensions to Behavioral Genetic Programming 28

3.3.1 Full Population Model . 28

3.3.2 Lasso Model . 29

3.3.3 Scikit Learn Model . 30

7

3.3.4 Randomized Model . 30

4 Experiments 31

4.1 Setup . 31

4.2 Results . 33

5 Conclusion 37

5.1 Contributions . 37

5.2 Future Work . 37

A Data Sets 41

B Results 43

C Fixed Parameters 47

D Run Configurations 49

D.1 Key . 49

D.2 Configurations . 49

8

List of Figures

2-1 Sample tree representing a program. 16

9

10

List of Tables

2.1 Sample data set. 18

2.2 The trace of the program from Figure 2-1 for the data set in Table 2.1. 18

4.1 Average rank of each configuration across all data sets. 34

B.1 Average program error for best of run programs. 43

B.2 Average program size for best of run programs. 43

B.3 Average runtime in seconds. 44

B.4 Standard deviation of program error for best of run programs. 44

B.5 Standard deviation of program size for best of run programs. 44

B.6 Standard deviation of runtime in seconds. 44

B.7 Percentage of runs that generated a perfect individual. 45

11

12

Chapter 1

Introduction

Genetic programming (GP) [5] is a subfield of Artificial Intelligence, in which the

principles of evolution are algorithmically translated in order to produce programs

with desired functionality. Each such program is defined by a set of genes, which can

be mutated and swapped in a manner similar to reproduction in biological organ-

isms. A typical genetic programming algorithm will start with a population of initial

programs, which are randomly generated. Each successive iteration, a population of

new programs is generated from the old population. Finally, the best programs from

the two populations are selected, and the process is repeated until a sufficiently good

program is found.

The power of this technique is that the programmer does not need to guess at the

structure of the desired program. All the programmer needs is a means of construct-

ing new programs from old programs, and a fitness function by which to compare

the performance of one program to another. On the surface, this seems like a very

promising method to produce arbitrarily complex programs, as long as the program-

mer has an understanding of the desired output. However, in practice, the landscape

of programs is enormous, and often times there are many local optima, which prevent

evolving programs from achieving the desired functionality.

There are a variety of techniques and adaptations to the basic genetic program-

ming methodology that attempt to exploit features of the evolutionary process to

arrive at optimal solutions more quickly. One such technique, designed by Krawiec

13

et al. [6] attempts to utilize information about how to identify useful subprograms.

These subprograms are components of programs in the population that will help drive

the evolutionary process, even if they are a part of a program that may not perform

well on the specified task. This technique is termed behavioral genetic programming

(BGP). The vision of this work is that BGP is a paradigm rich with possible exten-

sions to explore, many of which could give deeper insight into genetic programming

methods.

This work focuses on replicating the results first achieved by Krawiec et al., and

exploring various extensions to the BGP paradigm. This work proceeds as follows.

Chapter 2 discusses the basics of genetic programming, and the key ideas behind BGP.

Chapter 3 discusses my implementation of BGP with the added ability of running

many different configurations that were not explored by Krawiec et al. Chapter 4 dis-

cusses the experiments that are performed, and Chapter 5 discusses my contributions

and possible paths for future work.

14

Chapter 2

Related Work

2.1 Basics of Genetic Programming

2.1.1 Program Representations

As is stated in Chapter 1, Genetic programming is a general technique that can be

applied to almost any task domain. However, this work predominantly focuses on

the task of symbolic regression. Symbolic regression aims to find a mathematical

expression that fits a given data set’s training and out of sample test examples.

Therefore the programs in which we are interested define mathematical expressions

by combining a set of primitive operations.

Much of the time in genetic programming random segments of code are being re-

moved, inserted, and swapped between different programs. Therefore, it is important

to have a program representation that is resilient to these types of operations. As

a result, it can be useful to avoid loops, and other types of statements that could

result in programs that do not terminate. For this reason, often a tree structure is

employed, where the internal nodes of the trees are functions, with the children as the

arguments, and the leaves of the trees are terminals, such as variables and constants.

For the task of symbolic regression, the functions can be any set of primitive

mathematical functions, while the terminals will typically be the features of the data

set.

15

The tree in Figure 2-1 represents a simple program, which computes the math-

ematical function 𝑓(𝑥) = ln(𝑥1) + (𝑥1 − 𝑥2). Given a larger set of mathematical

operations, it is possible to create arbitrarily complex mathematical expressions.

Figure 2-1: Sample tree representing a program.

2.1.2 Generating New Programs

One of the core aspects of genetic programming is how to generate a new population of

programs from an old population. There are two primary operations used to generate

new programs: the mutation operation and the crossover operation.

Mutation

The mutation operation generates a single new program from a single old program.

First a mutation point is selected in the old program. This can be selected uniformly

at random, or biased towards certain parts of the tree. Then the subtree located at

the mutation point is removed, and a new subtree is generated in a similar way to

how the first population of programs was generated.

Crossover

The crossover operation generates two new programs from two old programs. First a

crossover point is selected in each old program. This can be done in any of the same

16

ways that a mutation point is selected. Then the subtrees located at the two crossover

points in the two old programs are swapped, creating two new program trees.

2.1.3 Choosing Programs to Survive

After a new population of programs is generated, only half of the programs from the

combined new and old populations are kept for the next generation of the evolutionary

process. If there is a single fitness function that is being optimized, this process is

very straightforward. Simply keep the programs that perform best on the fitness

function. However, often there are multiple fitness functions that are used to drive

the evolutionary process. For example, in the case of symbolic regression, one fitness

function could be the absolute error for predicting the dependent variable, while the

other fitness function could be the program size. When there are multiple fitness

functions, often one program will have a better fitness score than another program

for one fitness function, but not the remaining fitness functions. In this case a different

method must be used to determine which programs should be kept. The method used

for the purpose of this work is discussed in section 3.2.4.

2.1.4 Termination

The run of a genetic program terminates after one of several conditions is met. The

following are common termination conditions:

1. An optimal program is found.

2. A maximum number of generations is reached.

3. The run has exceeded the maximum allocated amount of time.

2.2 Behavioral Genetic Programming

One extension to the genetic programming paradigm is behavioral genetic program-

ming (BGP) [6]. As was mentioned in Chapter 1, BGP attempts to identify useful

subprograms that can then be used to enhance the evolutionary process.

17

2.2.1 Trace

In most genetic programming algorithms, the search is driven by the output of the

fitness functions alone. Only programs that perform well on the fitness functions are

kept, while the rest are rejected. However, every subtree that makes up an individual

program has a distinct numerical output for each fitness case in any given data set.

Let us consider the program in Figure 2-1, and the sample data set in Table 2.1.

Conventional genetic programming will only consider the outputs for each data point:

ln(3) + 1, ln(5) + 2, and compare those values to the desired output. However, each

subtree has its own output, which is ignored by the genetic programming process.

𝑥1 𝑥2 𝑦

3 2 3
5 3 4

Table 2.1: Sample data set.

The collection of the outputs on each subtree for all of the data points is called

the trace. For the program in Figure 2-1 and the fitness cases in Table 2.1, the trace

is shown in Table 2.2.

𝑠1 𝑠2 𝑠3 𝑠4 𝑠5 𝑠6

3 ln(3) 3 2 1 ln(3) + 1
5 ln(5) 5 3 2 ln(5) + 2

Table 2.2: The trace of the program from Figure 2-1 for the data set in Table 2.1.

The trace is a matrix where the number of rows is equal to the number of data

points, and the number of columns is equal to the number of subtrees in a given

program. There is no set order of the columns, although here they are presented in

the depth first traversal order of the subtrees that produce the values. The trace

captures a full snapshot of all of the intermediate states of the program evaluation.

18

2.2.2 Model

The key idea behind Behavioral Programming is to exploit the trace to identify useful

subtrees. Ordinary crossover does not incorporate any information about the quality

of the subtrees that are being swapped. However, the trace opens up many possibili-

ties to explore the quality of subtrees. In Behavioral Programming, the trace is used

to train a machine learning model to predict the desired output for each fitness case.

The model is then used for two purposes. The first is to create additional fitness

measures by which to evaluate a given program. The second is to identify useful

subtrees based on the composition of this model, which are then placed in an archive.

The content of the archive is then used for the supply the subtrees that are used in

the crossover operation, instead of taking arbitrary subtrees from other programs in

the population.

19

20

Chapter 3

Implementation

The following section details my implementation of behavioral genetic programming.

It follows the details presented by Krawiec et al. [6], with several adaptions in order

to explore several variants of BGP.

3.1 Codebase

The codebase that I use for this project was first built for FlexGP [9] and then ex-

tended for the implementation of Multiple Regression Genetic Programming (MRGP)

[1]. It is written in the Java programming language. With simple modifications the

codebase could run conventional GP for symbolic regression tasks. One of the main

contributions of my work is the way in which I extended the codebase. Many of the

abstractions that I introduced allow the GP process to be extended in unforeseen

ways.

3.2 Genetic Programming Run

During the execution of a genetic programming algorithm, there are three steps as-

sociated with any given generation. The steps are as follows:

∙ Initialization/Reproduction: Generate a new population of programs. In

the first round of evolution, the programs are generated from scratch. In all

21

subsequent rounds the programs are generated from the programs in the old

population.

∙ Evaluation: Evaluate all of the programs in the new population.

∙ Survival: Select which programs in the combined population will be kept for

the next round of evolutionary computation.

3.2.1 Initialization

When the GP run is initialized, the first step is to create an initial population of

programs. The number of programs in each generation is specified by the user at the

start of the run. The programs are generated by randomly choosing functions and

terminals as children of the parent nodes, until every leaf in the tree is a terminal.

A maximum depth is specified, and the trees are generated such that the trees vary

from having a depth of one to the maximum depth.

3.2.2 Reproduction

In all subsequent generations, new programs are generated from the population of

programs belonging to the previous generation. One of the modifications that I made

was the introduction of a reproduction operator. Previously the mutation operator

and crossover operator were hardcoded as the only possible operators used to generate

new children. The reproduction operator introduces a method to add children to the

new population, which can have many different implementations. For the purposes

of this work, the implementation of the reproduction operator that is used allows

mutation, crossover, and archive-based crossover, each with an associated probability

of being used, each time new programs are to be generated. This implementation

enables the use of conventional GP by setting the archive-based crossover probability

to zero.

22

Selection of Programs for Reproduction

During reproduction, new programs are generated until the population size is reached.

To generate a new program, an old program (or in case of crossover, a pair of old

programs) is selected to have one of the reproduction operators applied. The process

by which a program is selected is called tournament selection. A tournament size

is specified in the parameters of the GP run. For a given tournament size 𝑛, 𝑛

individuals are drawn uniformly at random from the population, and then compete

to determine which individual will have the reproduction operator applied. The

winner of the competition is simply the program with the highest rank based on the

NSGA-II algorithm [2]. The NSGA-II algorithm is discussed in Section 3.2.4.

Reproduction Operators

The mutation and crossover operations were discussed in Section 2.1.2. In the im-

plementation of behavioral genetic programming by Krawiec et al., the mutation and

crossover points for a given program tree are selected by first choosing the depth

of the point uniformly at random from 1 to the depth of the tree, then choosing a

node uniformly at random from the given depth. The third operation, archive-based

crossover, works identically to the mutation operator, with the exception of how the

new subtrees are generated. In ordinary mutation, the subtrees are generated in the

same manner that each member of the initial population of programs is generated.

However, in archive-based crossover, the subtrees are drawn from an archive, which

maintains a weighted distribution over which subtrees will be selected. The archive

is discussed further in section 3.2.3.

3.2.3 Evaluation

Once a new population of programs is generated, all of the new programs must be

evaluated on all of the fitness functions that are being used for the genetic program-

ming run. Additionally, in the case of behavioral genetic programming, the archive is

populated based on a machine learning model that is generated from the trace of each

23

program. This section details the process by which these steps are accomplished.

Fitness Function Evaluation

Another abstraction that I introduced into the codebase is that of a fitness function

evaluator. In conventional genetic programming, the program fitness functions can be

evaluated in any order, and all that is needed is the numerical output for each fitness

function for each program. In behavioral genetic programming there are two classes of

fitness functions. The functions in the first class only require the programs themselves

to be evaluated. The fitness functions in conventional genetic programming belong to

this class. The functions in the second class require a machine learning model built

on the trace of each program to be evaluated. For each possible configuration of BGP,

a different fitness function evaluator is used, which takes care of the proper order for

the fitness functions to be evaluated, and the generation of the model. The different

configurations are discussed in Section 4.1 and detailed in Appendix D.

Conventional Genetic Programming Fitness Functions

In conventional genetic programming, there are typically two fitness functions used

to evaluate a program. The first is the program error 𝑓 , which is a measure of how

close the program output on each data point is to the desired output. The form of

the program error fitness used by Krawiec et al. is given by Equation 3.1, where 𝑦 is

the output of the program, 𝑦 is the desired output, and 𝑑𝑚 denotes the Manhattan

distance between the two arguments. The second fitness function is typically a mea-

sure of program size 𝑠, where smaller programs are considered more fit than larger

programs. The form of the program size fitness used by Krawiec et al. is given by

Equation 3.2, where |𝑝| is the number of nodes in the tree that defines the program.

𝑓 = 1− 1

1 + 𝑑𝑚(𝑦, 𝑦)
(3.1)

𝑠 = 1− 1

|𝑝|
(3.2)

24

Behavioral Genetic Programming Fitness Functions

In behavioral genetic programming there are four fitness functions. Two are the con-

ventional fitness functions discussed in Section 3.2.3. The remaining fitness functions

that are used are the model complexity 𝑐, given by Equation 3.3, and the model error

𝑒, given by Equation 3.4, where 𝑀 is the output of the machine learning model when

it is evaluated on the trace of the program, and |𝑀 | is the size of the model.

One of the most expensive operations in the execution of a genetic program is the

evaluation of each program on all of the data points. This step is required for both

calculating the program error fitness, and generating the trace of the program. There-

fore, in behavioral genetic programming, the trace for a given program is generated

while the program error fitness value is calculated.

𝑐 = 1− 1

|𝑀 |
(3.3)

𝑒 = 1− 1

1 + 𝑑𝑚(𝑀, 𝑦)
(3.4)

Model

Once the trace for a given program in the population has been collected the machine

learning model can be built. The purpose of the model is two-fold. The first is that it

introduces additional fitness measures for each program (given by Equations 3.3 and

3.4). Second, it guides the process of populating the archive.

The algorithm that was used for the model in the original implementation of

behavioral genetic programming, by Krawiec et al. was REPTree. [4] REPTree is a

decision tree that can be used for both classification and regression tasks. For each

program in the population, a different model is built on the program trace. In my

implementation, one can use different models by writing different implementations

for the model interface.

25

Archive

In behavioral genetic programming, an archive is used from which to draw subtrees

that are used for archive-based crossover. The archive is given a maximum capac-

ity, which in the original implementation of Behavioral Programming by Krawiec et

al. was set to 50. After each round of fitness function evaluations, the archive is

repopulated in the following way. First the candidate subtrees are selected based on

whether or not their column in the trace was used in the machine learning model.

Each subtree is assigned a weight given by Equation 3.5, where 𝑒 is the model error

from Equation 3.4 and |𝑈 | is the number of distinct columns of the trace used in

the model. Note that all subtrees that are used in a certain model are given the

same weight in the archive. Each generation, after the model has been generated, the

candidate subtrees are combined with the pre existing contents of the archive (with

the exception of the first generation, as the archive would be empty). If the number

of candidate subtrees combined with the previous contents of the archive is less than

the archive capacity, then all of the subtrees are added to the archive. If the number

of candidate subtrees combined with the previous contents of the archive is greater

than the capacity of the archive, then subtrees are drawn without replacement with

probability proportional to their assigned weights. Algorithm 1 illustrates this proce-

dure. For my implementation I use a modification [8] of the algorithm introduced by

Efraimidis and Spirakis [3] to efficiently draw from a weighted distribution without

replacement (Note that Algorithm 1 does not include the details of this procedure).

When subtrees are drawn from the archive for archive-based crossover, they are drawn

from the weighted distribution with replacement.

𝑤 =
1

(1 + 𝑒)|𝑈 |
(3.5)

One significant implementation detail is that the archive cannot have two subtrees

which both have the same output on all of the data points (termed the same seman-

tics). In both the original implementation and my own, if two subtrees have the same

semantics, then only the subtree with fewer nodes is kept. Subtrees are duplicated

26

Algorithm 1 Populate Archive
1: procedure PopulateArchive
2: for subtree in archive do
3: 𝑤 ← the weight of subtree
4: add (subtree,w) to candidateSubtrees
5: clear archive
6: for program in population do
7: 𝑇 ← collectTrace(program)
8: M← buildModel(T)
9: 𝑈 ← subtrees included in M

10: 𝑤 ← 1/((1 + 𝑒)|𝑈 |)
11: for subtree in U do
12: add (subtree,w) to candidateSubtrees
13: if |candidateSubtrees | ≤ ARCHIVE_CAPACITY then
14: add all candidateSubtrees to archive
15: else
16: while archive.size < ARCHIVE_CAPACITY do
17: subtree← draw from candidateSubtrees
18: 𝑤 ← the weight of subtree
19: remove (subtree,w) from candidateSubtrees
20: add (subtree,w) to archive

both when they are added to the archive, and drawn from the archive, to ensure that

no two programs have a reference to the same subtree.

3.2.4 Survival

Once all of the fitness functions have been evaluated, and the archive repopulated,

only half of the programs from the combination of the old and new generation may

be kept. Given that in conventional genetic programming and behavioral genetic

programming there are multiple fitness functions, we cannot simply keep the programs

that perform best on the fitness functions. Many programs may perform well on one

metric, at the expense of another. Therefore the NSGA-II algorithm [2] is used to

rank all of the programs in the combined population, and only the highest ranking

half of the combined population is kept for the next generation.

The NSGA-II algorithm first classifies each program into a series of fronts. The

first front (termed pareto front) is defined by all of the programs for which no other

27

program in the population performs better on at least one fitness function, and as

well or better on the remaining fitness functions. Each successive front is defined by

first removing the last front from the population, and recomputing the next front

on the remaining programs in the same way that the pareto front was computed.

Every program in a given front outranks all programs in all subsequent fronts, and is

outranked by all programs in all previous fronts.

Within a given front each program is ranked by its crowding distance. To compute

the crowding distance of an individual program, first all fitness measures are normal-

ized (Note that in BGP we use fitness functions which are already normalized). Then

for each fitness measure, the difference between the fitness of the program with the

next highest fitness and the next lowest fitness is computed. The crowding distance

for an individual program is given by the average difference across all fitness measures.

If for a given fitness measure an individual program has either the highest or lowest

fitness value in the population, it receives a crowding distance of infinity. Programs

with higher crowding distances outrank programs with lower crowding distances. The

reason for the crowding distance ranking is to increase the diversity of the population.

Programs with higher crowding distances are more dissimilar to other programs in

the population.

3.3 Extensions to Behavioral Genetic Programming

One of the core goals of this work is to explore different extensions and alternative

implementations of behavioral genetic programming. For the purpose of this work

I explore several variants of the BGP machine learning model, which are detailed

below.

3.3.1 Full Population Model

One of the main ideas that I explore is how the model would perform if instead

of training one model on the trace of each program in the population, I train one

model for the entire population on the combined traces of all of the programs. This

28

effectively creates a single trace matrix with the same number of rows but many

more columns. The combined trace matrix represents an extremely high dimensional

problem, with uninvestigated correlation of its features.

The idea behind training a model for each individual in the population is twofold.

The first is that the accuracy of the model gives insight into how much information

the subtrees in a program encode about the desired output. The second is that

knowing which subtrees are used in the model gives insight into which subtrees are

more valuable than others. What it does not tell us is which subtrees will work well

with other subtrees in the population.

The motivation behind combining all of the program traces to train a single ma-

chine learning model is to hopefully identify groups of subtrees coming from different

programs in the population that work well together. With this method one can pop-

ulate the archive in the same way as in ordinary BGP, however, one cannot use the

additional fitness measures, because each program in the population does not have a

distinct model error and model complexity associated with it.

3.3.2 Lasso Model

Another implementation that I explore uses Least Absolute Shrinkage and Selection

Operator (Lasso) as the machine learning model. Instead of training REPTree on

the trace of each program in the population, I run the Lasso regression method. For

each feature in the data set on which Lasso is run, it assigns a real valued weight.

The predicted output is given by the inner product of the features in the data set,

and the weights assigned by Lasso, plus a real valued offset. One benefit to Lasso is

that it will perform feature selection by assigning some feature weights a value of 0.

In this model, I use the same formula for model error, and I define the size of the

model |𝑀 | as the number of features with non-zero coefficients. Only subtrees with

corresponding features that are given non-zero weights by Lasso are included in the

archive. I use the absolute value of the weights assigned by Lasso as the weight for

each respective subtree in the archive.

29

3.3.3 Scikit Learn Model

Another implementation of the model interface that I employ uses the Python Scikit

Learn DecisionTreeRegressor class for regression. This model works identically to the

model that uses REPTree with the exception of calling an alternative implementation

of a decision tree.

3.3.4 Randomized Model

Finally, I use an implementation that is identical to the model used in REPTree,

however, for each subtree used in the resulting REPTree decision tree, before being

placed in the archive, it is replaced by a subtree drawn uniformly at random from the

subtrees in the program. The purpose of this implementation is not to see whether or

not this model performs better than the model that uses the subtrees from REPTree.

Rather, it is used to illuminate how much is gained from populating the archive with

the trees that are used by REPTree.

30

Chapter 4

Experiments

4.1 Setup

In order to test the performance of different behavioral genetic programming models,

I run 16 distinct configurations of BGP on the same 17 data sets that are used for the

task of symbolic regression by Krawiec et al. The basis of the data sets is taken from

a paper entitled Genetic Programming Needs Better Benchmarks by McDermott et

al. [7] The complete specification of all 17 data sets is presented in Appendix A.

The basis of the 16 BGP configurations that I use, comes from the 3 BGP config-

urations used by Krawiec et al.:

1. BP2A uses only the program error fitness function and the program size fitness

function (Equations 3.1 and 3.2), but replaces crossover with archive-based

crossover.

2. BP4 uses all four BGP fitness functions (Equations 3.1, 3.2, 3.3, and 3.4), but

performs ordinary crossover.

3. BP4A uses all four BGP fitness functions, and replaces crossover with archive-

based crossover.

Note that in all three variants, the same model is constructed. The only distinction

is for what the model is used. In addition to running the three configurations above

using the REPTree model (as is done by Krawiec et al.), I run each of the three

31

configurations using each of the models specified in Section 3.3. I also explore several

other parameter configurations. I explore the use of a larger archive, and the use of

different mutation and archive-based crossover rates. Specifically, in several runs I

use a mutation rate of 0.05, and a archive-based crossover rate of 0.95. The reason

for this last variant is that GP crossover creates two new programs each time it

is called. However, archive-based crossover only creates one new program. These

altered operation rates closely simulate the creation of two new programs each time

archive-based crossover is called.

For a baseline comparison, I run conventional GP with the two conventional GP

fitness functions described in Section 3.2.3. For all of the runs, I use the same param-

eters that are specified by Krawiec et al. A complete list of the parameters that are

fixed for every run can be found in Appendix C. The following is a complete list of the

17 configurations (16 BGP, 1 conventional GP) that I run. Their exact specifications

are detailed in Appendix D.

1. GP

2. BP2A - REPTree

3. BP2A - Full Pop

4. BP2A - Lasso

5. BP2A - Scikit Learn

6. BP2A - Randomized

7. BP2A - Larger Archive

8. BP2A - Different Rates

9. BP4 - REPTree

10. BP4 - Lasso

11. BP4 - Scikit Learn

12. BP4A - REPTree

13. BP4A - Lasso

14. BP4A - Scikit Learn

15. BP4A - Randomized

16. BP4A - Larger Archive

17. BP4A - Different Rates

For the majority of the configurations, I perform 30 runs on each data set. How-

ever, all of the Scikit Learn configurations take much longer to run because they

require calling Python from within Java. Therefore, they are run 17 times each. Ad-

32

ditionally, BP2A - Lasso, and BP4A - Lasso, both did not run to completion. As a

result, they are omitted from the discussion. They are addressed in Section 5.2.

4.2 Results

Appendix B contains tables for the average and standard deviation of program fitness,

program size, and program runtime, for the best of run programs for each configu-

ration and data set. A best of run program is the program with the lowest program

error generated in a given run. Additionally, there is a table with the percentage of

runs that produced a perfect individual for each configuration and dataset. Below I

discuss the results in aggregate and compare them to those of Krawiec et al.

Table 4.1 contains the average rank for each configuration across all data sets for

a variety of metrics.

Average Rank for BGP with REPTree

Krawiec et al found that the three BGP configurations that they run rank as follows

for the given metrics:

∙ Program fitness: BP4A, BP2A, BP4, GP

∙ Number of perfect programs found: BP4A, BP2A, BP4, GP

∙ Program size: GP, BP4, BP2A, BP4A

∙ Program runtime: GP, BP4, BP4A, BP2A

It is important to note that the above ranks by Krawiec et al. are calculated based

on the performance of each configuration across multiple task domains: boolean,

categorical, and regression, while I only implement BGP for regression. For program

runtime, both Krawiec et al., and I find that GP is by far the fastest, and using an

archive is slower than not. Considering program fitness, and the number of perfect

programs found, both Krawiec et al., and I find that the BGP paradigm of replacing

crossover with archive-based crossover is beneficial. However, my results suggest that

33

when considering program fitness, the added fitness functions hurt the evolutionary

process.

Average Fitness Rank Average Rank For Finding Perfect Programs
1 BP2A - Larger Archive 3.59 BP2A - Full Pop 1.12
2 BP2A - REPTree 3.76 BP4A - Larger Archive 1.71
3 BP2A - Different Rates 3.82 BP4A - Different Rates 2.24
4 BP2A - Scikit Learn 6.18 BP4A - Scikit Learn 2.47
5 BP4A - Scikit Learn 6.29 BP2A - Randomized 2.65
6 BP4 - Scikit Learn 6.53 BP4A - REPTree 2.65
7 BP2A - Randomized 6.65 BP2A - Larger Archive 2.76
8 GP 7.0 BP4A - Randomized 3.18
9 BP4A - Different Rates 9.82 BP4 - REPTree 3.24
10 BP4 - Lasso 9.88 BP2A - Different Rates 3.53
11 BP4A - REPTree 10.12 BP4 - Lasso 3.53
12 BP4A - Larger Archive 10.94 BP2A - REPTree 3.59
13 BP2A - Full Pop 11.35 BP2A - Scikit Learn 3.59
14 BP4 - REPTree 11.76 GP 4.59
15 BP4A - Randomized 12.29 BP4 - Scikit Learn 5.59

Average Size Rank Average Runtime Rank
1 BP4 - Scikit Learn 2.82 GP 1.0
2 GP 3.0 BP2A - Larger Archive 2.24
3 BP2A - Randomized 5.82 BP4 - REPTree 4.76
4 BP4 - Lasso 6.29 BP4A - Different Rates 5.0
5 BP2A - Scikit Learn 6.59 BP2A - Randomized 5.71
6 BP4 - REPTree 7.18 BP4A - Randomized 6.18
7 BP4A - Scikit Learn 7.41 BP2A - REPTree 6.47
8 BP2A - Different Rates 7.71 BP2A - Different Rates 6.47
9 BP2A - Larger Archive 8.29 BP4A - Larger Archive 7.35
10 BP2A - REPTree 9.35 BP4A - REPTree 9.88
11 BP4A - Larger Archive 9.53 BP2A - Full Pop 10.94
12 BP4A - Randomized 9.88 BP4 - Lasso 12.35
13 BP4A - Different Rates 10.35 BP4 - Scikit Learn 12.94
14 BP4A - REPTree 10.88 BP4A - Scikit Learn 14.06
15 BP2A - Full Pop 14.82 BP2A - Scikit Learn 14.65

Table 4.1: Average rank of each configuration across all data sets.

Full Population Model

It seems that running the model on each program trace is almost always better than

running the model on the combined trace of the entire population. In the full popu-

lation case, each generation, the archive is only populated with subtrees taken from

a single model, which might result in a less diverse archive. Further work is needed

34

to understand precisely why this model performs less well.

Lasso Model

The most significant feature of BGP that this configuration brings to light is that it

is important to use a highly robust machine learning model for BGP. Even for BP4

- Lasso, which did run to completion, the standard deviation of the runtimes are by

far the largest (see Table B.6). The results also suggest, that for BP4, Lasso may

provide better additional fitness measures than REPTree.

Scikit Learn Model

For the Scikit Learn model, it seems that the resulting fitness is neither conclusively

better nor worse than using REPTree. However, the runtimes of all of the Scikit

Learn Model configurations were notably the longest. This is primarily due to the

overhead of running a model that is written in the Python programming language,

and calling it from Java.

Randomized Model

The randomized model consistently performed worse than the model that used the

trees generated by REPTree. This gives confidence to the claim that the subtrees

generated by REPTree are more beneficial for driving the evolutionary process.

Larger Archive

The results suggest that using a larger archive does not substantially help nor harm

the resulting fitness of the generated programs.

Different Rates

It appears that for both relevant BGP configurations, using a higher archive-based

crossover rate, does not have a substantial effect on the resulting program fitness for

a given run. This seems to invalidate the possibility that BGP only performed better

35

than GP because the effective reproduction operator probabilities were substantially

different from conventional GP.

36

Chapter 5

Conclusion

5.1 Contributions

My primary contributions are threefold.

1. Provide support for the claims of BGP by Krawiec et al.

2. Create a BGP implementation that is easily extendable for future work related

to BGP.

3. Explore numerous extensions to and features of the BGP methodology.

5.2 Future Work

A lot of what this work brings to light is particular paths to extend the concepts and

understanding of BGP. Below I detail several avenues to explore.

Alternate Models

The primary avenue that this work opens up is the possibility of exploring different

models to use in BGP. It would be interesting to see if using a machine learning model

whose purpose is more inline with what BGP asks for would benefit the evolutionary

process. For example, instead of building an entire machine learning model on the

trace, one could use a feature selection technique, or measure the statistical correlation

37

between the columns. The output would provide material with which to populate the

archive. However, this would not provide additional fitness measures.

Lasso

Lasso brought several interesting features of BGP to light. It is important to have

a machine learning model that is robust against the pathological inputs that can be

generated by a genetic programming algorithm. It would be interesting to explore

why Lasso in general, or at least the implementation that I use has significant trouble

for certain inputs. Additionally, it is interesting that even though running Lasso is

the runtime bottle neck, the configurations that took substantially too long to run

were BP2A, and BP4A, both of which use an archive. Understanding precisely why

the configurations with an archive produce worse inputs to Lasso could be insightful.

Mixing Traces

It is unclear exactly why the BGP model that uses the combined traces of all of

the programs in the population performed less well than running the model on each

program trace independently. It is possible that the idea has merit, but the particulars

were not a good fit for BGP. In particular, in each generation only a single machine

learning model is built. Therefore, all of the selected trees put into the archive in a

single generation have the same weight.

An alternate implementation would be to draw random subsets from the combined

trace of the programs in the population, and build a model on each. This would create

many candidate subtrees with different weights, and possibly a more robust archive, if

it can be populated with subtrees that are frequently selected by the machine learning

model.

Subtrees with the Same Semantics

As is mentioned in Section 3.2.3 if two subtrees have identical columns in the program

trace (i.e. identical semantics), only the smaller subtree is kept. This introduces a bias

that is not necessarily beneficial to the evolutionary process. It would be interesting

38

to explore how common subtrees with identical semantics are, and if choosing the

smaller tree is the better choice.

Combining Reproduction Operators

It would be interesting to see if combining mutation, crossover, and archive-based

crossover could enable better performance than using only two of the reproduction

operators.

Model Evaluation

In BGP, after the model is built on the trace of each program, it is evaluated on the

trace. The result of its evaluation is then used as the output of one of the fitness

functions for the program. It would be interesting to explore evaluating each model

on a test set, instead of the trace. Perhaps this would yield a more useful fitness

function.

Statistical Significance of the Results

Finally, in order to better understand the significance of the results presented in

this work, it would be useful to determine for which configurations the difference in

performance is statistically significant.

39

40

Appendix A

Data Sets

All of the data sets used are defined such that the dependent variable is the output of

a particular mathematical function for a given set of inputs. They are taken from a

paper entitled Genetic Programming Needs Better Benchmarks by McDermott et al.

[7] All of the inputs are taken to form a grid on some interval. Let 𝐸[𝑎, 𝑏, 𝑐] denote

𝑐 samples equally spaced in the interval [𝑎, 𝑏]. (Note that McDermott et al. defines

𝐸[𝑎, 𝑏, 𝑐] slightly differently.) Below is a list of all of the data sets that are used:

1. Keijzer1: 0.3𝑥 sin(2𝜋𝑥); 𝑥 ∈ 𝐸[−1, 1, 20]

2. Keijzer11: 𝑥𝑦 + sin((𝑥− 1)(𝑦 − 1)); 𝑥, 𝑦 ∈ 𝐸[−3, 3, 5]

3. Keijzer12: 𝑥4 − 𝑥3 + 𝑦2

2
− 𝑦; 𝑥, 𝑦 ∈ 𝐸[−3, 3, 5]

4. Keijzer13: 6 sin(𝑥) cos(𝑦); 𝑥, 𝑦 ∈ 𝐸[−3, 3, 5]

5. Keijzer14: 8
2+𝑥2+𝑦2

; 𝑥, 𝑦 ∈ 𝐸[−3, 3, 5]

6. Keijzer15: 𝑥3

5
− 𝑦3

2
− 𝑦 − 𝑥; 𝑥, 𝑦 ∈ 𝐸[−3, 3, 5]

7. Keijzer4: 𝑥3𝑒−𝑥 cos(𝑥) sin(𝑥)(sin2(𝑥) cos(𝑥)− 1); 𝑥 ∈ 𝐸[0, 10, 20]

8. Keijzer5: 3𝑥𝑧
(𝑥−10)𝑦2

; 𝑥, 𝑦 ∈ 𝐸[−1, 1, 4]; 𝑧 ∈ 𝐸[1, 2, 4]

9. Nguyen10: 2 sin(𝑥) cos(𝑦); 𝑥, 𝑦 ∈ 𝐸[0, 1, 5]

10. Nguyen12: 𝑥4 − 𝑥3 + 𝑦2

2
− 𝑦; 𝑥, 𝑦 ∈ 𝐸[0, 1, 5]

11. Nguyen3: 𝑥5 + 𝑥4 + 𝑥3 + 𝑥2 + 𝑥; 𝑥 ∈ 𝐸[−1, 1, 20]

12. Nguyen4: 𝑥6 + 𝑥5 + 𝑥4 + 𝑥3 + 𝑥2 + 𝑥; 𝑥 ∈ 𝐸[−1, 1, 20]

13. Nguyen5: sin(𝑥2) cos(𝑥)− 1; 𝑥 ∈ 𝐸[−1, 1, 20]

41

14. Nguyen6: sin(𝑥) + sin(𝑥+ 𝑥2); 𝑥 ∈ 𝐸[−1, 1, 20]

15. Nguyen7: ln(𝑥+ 1) + ln(𝑥2 + 1); 𝑥 ∈ 𝐸[0, 2, 20]

16. Nguyen9: sin(𝑥) + sin(𝑦2); 𝑥, 𝑦 ∈ 𝐸[0, 1, 5]

17. Sext: 𝑥6 − 2𝑥4 + 𝑥2; 𝑥 ∈ 𝐸[−1, 1, 20]

42

Appendix B

Results

Keij1 Keij11 Keij12 Keij13 Keij14 Keij15 Keij4 Keij5 Nguy10 Nguy12 Nguy3 Nguy4 Nguy5 Nguy6 Nguy7 Nguy9 Sext
GP 0.338 0.858 0.97 0.562 0.798 0.87 0.6 0.989 0.106 0.38 0.181 0.247 0.108 0.017 0.114 0.1 0.102

BP2A REPTree 0.243 0.776 0.972 0.393 0.723 0.883 0.384 0.975 0.11 0.343 0.196 0.265 0.037 0.091 0.122 0.068 0.052
Full Pop 0.272 0.864 0.982 0.565 0.809 0.947 0.397 0.977 0.304 0.393 0.376 0.372 0.081 0.277 0.179 0.214 0.129

Scikit Learn 0.327 0.769 0.966 0.481 0.726 0.907 0.468 0.977 0.199 0.379 0.2 0.285 0.04 0.119 0.127 0.075 0.054
Randomized 0.289 0.788 0.973 0.462 0.816 0.875 0.504 0.979 0.223 0.385 0.227 0.277 0.021 0.044 0.144 0.047 0.075

Larger Archive 0.286 0.566 0.97 0.388 0.742 0.877 0.397 0.977 0.146 0.344 0.192 0.257 0.029 0.112 0.127 0.059 0.051
Different Rates 0.272 0.694 0.976 0.326 0.773 0.882 0.37 0.974 0.165 0.361 0.202 0.284 0.031 0.071 0.103 0.042 0.054

BP4 REPTree 0.359 0.852 0.982 0.817 0.872 0.922 0.522 0.993 0.309 0.388 0.193 0.33 0.103 0.133 0.117 0.165 0.127
Lasso 0.324 0.833 0.985 0.669 0.811 0.916 0.511 0.987 0.105 0.365 0.292 0.399 0.13 0.08 0.182 0.103 0.092

Scikit Learn 0.357 0.684 0.968 0.548 0.776 0.887 0.513 0.991 0.144 0.36 0.266 0.288 0.126 0.0 0.104 0.04 0.083
BP4A REPTree 0.319 0.804 0.981 0.765 0.821 0.919 0.505 0.991 0.209 0.386 0.22 0.328 0.088 0.117 0.128 0.194 0.1

Scikit Learn 0.261 0.811 0.973 0.507 0.691 0.94 0.471 0.981 0.264 0.379 0.219 0.273 0.034 0.088 0.115 0.065 0.056
Randomized 0.338 0.844 0.984 0.705 0.844 0.939 0.56 0.989 0.338 0.414 0.197 0.364 0.104 0.137 0.138 0.145 0.118

Larger Archive 0.321 0.858 0.982 0.738 0.788 0.922 0.529 0.99 0.271 0.367 0.222 0.348 0.137 0.125 0.136 0.118 0.096
Different Rates 0.32 0.815 0.98 0.779 0.802 0.913 0.525 0.991 0.226 0.375 0.145 0.303 0.112 0.134 0.12 0.215 0.102

Table B.1: Average program error for best of run programs.

Keij1 Keij11 Keij12 Keij13 Keij14 Keij15 Keij4 Keij5 Nguy10 Nguy12 Nguy3 Nguy4 Nguy5 Nguy6 Nguy7 Nguy9 Sext
GP 44.83 52.4 41.23 31.8 27.03 50.4 48.77 43.93 16.7 22.8 24.03 27.87 19.53 10.53 28.27 11.7 31.9

BP2A REPTree 45.63 45.07 64.0 46.83 27.87 62.8 61.73 63.47 29.93 39.27 43.13 49.47 25.73 27.03 36.07 17.73 33.2
Full Pop 88.0 70.07 102.13 50.6 55.9 115.3 101.63 76.57 53.5 67.97 61.47 77.4 36.73 50.2 64.4 56.83 76.7

Scikit Learn 32.24 35.59 52.82 35.41 32.35 66.29 52.12 58.59 34.82 33.24 43.0 35.82 24.88 28.24 32.82 11.47 33.53
Randomized 36.33 36.47 48.0 35.53 32.2 56.77 60.57 39.97 31.13 32.57 40.1 38.33 22.8 21.4 31.87 13.9 41.07

Larger Archive 44.6 37.63 57.2 36.67 26.87 54.5 73.63 50.97 32.8 38.8 39.63 50.13 21.97 29.2 33.77 30.53 34.73
Different Rates 36.47 37.47 57.9 48.43 29.0 64.13 67.57 58.27 31.3 34.27 37.17 43.57 23.9 22.73 32.87 11.93 39.9

BP4 REPTree 36.0 45.03 52.5 37.07 40.7 59.67 62.43 59.87 31.1 32.53 21.77 36.93 22.5 22.6 32.9 21.0 41.77
Lasso 34.73 50.97 63.93 39.23 36.47 56.77 60.93 84.53 16.13 35.9 27.23 32.6 20.27 16.53 28.47 13.87 34.1

Scikit Learn 34.82 29.18 54.06 26.24 28.71 51.29 65.0 39.29 20.59 32.12 26.18 31.76 20.82 9.0 26.0 11.35 29.71
BP4A REPTree 61.93 50.3 89.23 50.1 32.13 67.13 83.07 53.93 31.97 40.37 40.6 48.13 22.2 31.23 33.23 26.73 43.53

Scikit Learn 45.35 39.06 53.0 31.94 34.06 73.06 48.88 58.12 39.41 31.41 37.41 43.29 24.47 29.0 30.65 16.47 32.94
Randomized 70.23 53.4 69.17 35.63 34.0 68.27 66.8 56.9 49.07 36.73 37.63 43.83 18.0 29.27 29.97 20.67 53.57

Larger Archive 55.37 42.93 83.8 52.6 28.8 64.6 64.8 60.07 41.73 42.5 36.37 49.17 16.47 35.03 30.47 20.7 36.17
Different Rates 42.97 43.17 95.73 66.1 32.17 68.73 97.33 65.13 35.33 36.7 31.67 43.27 16.37 31.2 34.1 27.43 52.63

Table B.2: Average program size for best of run programs.

43

Keij1 Keij11 Keij12 Keij13 Keij14 Keij15 Keij4 Keij5 Nguy10 Nguy12 Nguy3 Nguy4 Nguy5 Nguy6 Nguy7 Nguy9 Sext
GP 9.39 7.76 7.53 7.46 6.34 7.7 8.92 7.66 6.8 6.74 8.15 8.15 7.73 8.27 8.26 6.81 8.69

BP2A REPTree 21.11 20.43 19.36 20.47 15.36 21.04 23.37 38.18 19.34 17.66 20.45 20.93 19.89 20.47 19.32 20.09 21.03
Full Pop 34.56 26.46 26.06 25.66 22.42 29.0 34.2 42.75 25.2 28.12 32.53 33.36 32.25 33.49 32.89 25.33 33.03

Scikit Learn 1609.69 1777.26 1757.03 1686.68 1704.65 1768.26 1769.71 1772.31 1746.19 1755.9 1753.05 1752.44 1777.4 1609.44 1755.66 1599.99 1777.08
Randomized 21.99 19.58 17.89 18.12 14.38 20.95 23.03 33.97 18.35 17.09 21.1 20.33 21.33 20.97 20.25 18.82 21.9

Larger Archive 17.03 15.88 14.92 15.25 15.75 16.3 18.82 28.03 15.2 14.01 15.79 15.99 15.37 15.82 15.14 16.15 16.64
Different Rates 20.33 21.61 19.53 21.15 14.51 22.18 23.44 42.84 20.43 17.87 19.79 19.77 18.69 18.99 18.5 21.55 20.47

BP4 REPTree 19.8 17.9 18.61 20.13 15.19 18.98 21.67 37.59 18.59 19.6 20.08 18.37 17.67 20.44 19.46 21.12 20.88
Lasso 428.52 82.52 88.5 1715.48 325.04 54.02 2850.23 234.47 45.0 111.22 62.42 71.2 57.85 47.13 35.99 45.53 576.13

Scikit Learn 1593.13 1601.44 1597.46 1606.18 1642.73 1618.15 1608.75 1605.08 1595.05 1609.67 1603.42 1608.03 1603.09 1591.73 1591.2 1604.62 1594.9
BP4A REPTree 23.67 22.05 21.35 22.68 16.98 22.39 25.59 42.0 21.66 22.0 22.61 22.6 21.56 23.88 21.63 23.57 23.81

Scikit Learn 1675.06 1687.09 1666.51 1684.53 1702.18 1658.17 1686.16 1672.19 1661.06 1680.43 1676.39 1665.83 1675.35 1682.23 1671.73 1690.09 1668.25
Randomized 21.96 19.18 19.07 19.46 16.43 19.84 22.25 35.63 19.48 19.21 20.5 19.56 19.49 21.34 19.18 20.61 22.06

Larger Archive 21.68 19.84 19.82 20.41 17.35 20.51 23.39 35.57 19.81 19.51 20.42 20.54 19.31 21.5 19.49 21.59 21.9
Different Rates 19.64 18.82 19.78 20.52 16.04 20.02 21.53 39.21 19.14 18.83 18.35 18.59 17.14 18.96 17.2 22.13 20.14

Table B.3: Average runtime in seconds.

Keij1 Keij11 Keij12 Keij13 Keij14 Keij15 Keij4 Keij5 Nguy10 Nguy12 Nguy3 Nguy4 Nguy5 Nguy6 Nguy7 Nguy9 Sext
GP 0.116 0.155 0.032 0.36 0.077 0.071 0.155 0.005 0.15 0.039 0.163 0.133 0.14 0.07 0.073 0.211 0.079

BP2A REPTree 0.106 0.242 0.012 0.31 0.061 0.064 0.126 0.018 0.131 0.043 0.108 0.089 0.032 0.107 0.073 0.091 0.018
Full Pop 0.091 0.093 0.01 0.333 0.071 0.019 0.12 0.016 0.141 0.066 0.143 0.097 0.082 0.14 0.126 0.182 0.086

Scikit Learn 0.084 0.274 0.033 0.357 0.106 0.042 0.184 0.024 0.144 0.03 0.104 0.061 0.043 0.13 0.071 0.148 0.037
Randomized 0.118 0.271 0.023 0.365 0.099 0.087 0.178 0.016 0.13 0.028 0.111 0.094 0.008 0.071 0.065 0.112 0.077

Larger Archive 0.107 0.399 0.017 0.338 0.089 0.084 0.128 0.022 0.138 0.052 0.108 0.097 0.027 0.099 0.065 0.091 0.025
Different Rates 0.111 0.333 0.014 0.295 0.077 0.05 0.123 0.021 0.156 0.04 0.11 0.088 0.026 0.08 0.059 0.073 0.028

BP4 REPTree 0.062 0.118 0.013 0.193 0.04 0.039 0.144 0.005 0.128 0.047 0.19 0.149 0.087 0.136 0.076 0.174 0.072
Lasso 0.082 0.217 0.006 0.305 0.077 0.061 0.127 0.014 0.148 0.054 0.145 0.103 0.101 0.143 0.085 0.162 0.051

Scikit Learn 0.041 0.356 0.02 0.412 0.066 0.048 0.15 0.005 0.167 0.042 0.161 0.11 0.135 0.0 0.07 0.096 0.043
BP4A REPTree 0.087 0.231 0.01 0.165 0.066 0.036 0.119 0.008 0.165 0.034 0.108 0.099 0.066 0.113 0.06 0.174 0.052

Scikit Learn 0.121 0.191 0.014 0.381 0.077 0.03 0.162 0.015 0.156 0.038 0.119 0.093 0.022 0.094 0.059 0.133 0.019
Randomized 0.088 0.177 0.006 0.251 0.055 0.029 0.119 0.007 0.12 0.038 0.103 0.137 0.098 0.13 0.088 0.169 0.071

Larger Archive 0.1 0.146 0.012 0.175 0.062 0.042 0.114 0.006 0.143 0.063 0.119 0.116 0.103 0.102 0.076 0.15 0.048
Different Rates 0.079 0.203 0.008 0.178 0.066 0.044 0.138 0.003 0.154 0.038 0.113 0.102 0.089 0.134 0.061 0.183 0.058

Table B.4: Standard deviation of program error for best of run programs.

Keij1 Keij11 Keij12 Keij13 Keij14 Keij15 Keij4 Keij5 Nguy10 Nguy12 Nguy3 Nguy4 Nguy5 Nguy6 Nguy7 Nguy9 Sext
GP 23.836 31.9 17.99 15.709 12.823 21.296 44.228 26.52 13.503 6.901 12.454 8.655 8.597 4.863 7.33 10.571 18.063

BP2A REPTree 20.034 19.152 28.776 24.376 8.523 24.437 32.567 33.433 19.176 14.861 19.052 22.007 8.481 17.186 19.084 13.945 12.973
Full Pop 60.071 29.06 93.357 28.114 26.739 58.357 43.987 42.429 36.081 43.072 26.065 32.648 26.125 18.721 43.892 35.947 59.331

Scikit Learn 9.434 14.32 23.365 14.492 11.225 24.374 23.392 27.231 19.989 14.489 18.14 24.818 7.91 16.112 14.197 12.306 11.932
Randomized 14.912 12.876 23.897 15.75 11.6 24.958 37.929 25.57 12.746 11.488 18.922 14.704 11.321 16.122 14.125 12.869 24.503

Larger Archive 33.811 20.009 31.578 24.281 8.686 20.306 24.68 27.946 22.33 15.587 23.791 29.917 6.135 18.369 13.691 20.467 11.24
Different Rates 18.016 17.905 25.438 37.239 10.106 22.753 40.731 35.773 17.508 16.935 17.846 20.513 7.059 12.928 12.543 7.793 16.644

BP4 REPTree 17.631 31.965 26.529 21.627 29.371 25.234 62.81 39.799 17.887 22.235 10.125 11.448 12.008 14.753 21.973 24.28 25.337
Lasso 19.482 29.946 32.804 24.2 21.48 24.776 67.692 67.565 11.566 15.129 10.449 15.239 9.194 12.868 22.684 9.58 25.509

Scikit Learn 18.822 7.906 18.552 6.907 17.398 15.888 65.088 20.219 14.709 7.692 14.916 16.311 7.778 0.0 6.937 13.754 8.93
BP4A REPTree 129.111 27.786 54.411 30.277 20.175 29.212 42.227 38.899 25.492 17.227 23.807 23.523 14.822 18.16 14.042 23.694 28.724

Scikit Learn 23.8 17.134 24.9 12.436 11.904 39.492 31.717 47.524 19.635 12.381 13.439 20.795 7.022 20.722 13.061 19.327 12.563
Randomized 51.385 35.059 44.184 25.193 24.931 41.312 35.23 44.464 44.082 18.081 17.325 13.297 5.385 18.613 14.063 19.719 39.541

Larger Archive 37.992 26.554 44.508 33.6 13.965 29.554 32.115 45.038 27.465 18.599 17.316 27.39 10.016 16.447 12.989 18.163 15.644
Different Rates 26.565 19.868 57.523 52.438 15.269 29.461 71.036 43.696 24.241 16.265 13.595 20.525 6.661 17.194 13.504 22.915 50.013

Table B.5: Standard deviation of program size for best of run programs.

Keij1 Keij11 Keij12 Keij13 Keij14 Keij15 Keij4 Keij5 Nguy10 Nguy12 Nguy3 Nguy4 Nguy5 Nguy6 Nguy7 Nguy9 Sext
GP 2.546 0.861 0.644 1.03 0.544 0.791 1.642 1.086 0.955 0.5 0.469 0.323 0.496 0.394 0.601 0.504 1.088

BP2A REPTree 1.261 1.782 2.56 2.182 0.841 2.295 1.742 7.382 1.1 1.442 1.161 1.325 0.855 0.945 0.855 1.234 1.125
Full Pop 3.071 3.257 4.284 2.796 2.555 4.886 2.559 4.849 3.139 5.65 2.463 2.814 3.229 2.596 3.152 2.445 2.95

Scikit Learn 41.523 450.092 397.491 283.709 271.904 422.125 389.593 398.268 393.374 392.588 394.007 404.207 443.902 41.234 406.231 22.835 434.365
Randomized 1.08 1.472 2.001 1.331 0.914 2.091 2.934 6.304 0.905 1.19 1.069 0.987 1.109 0.94 0.859 1.034 2.472

Larger Archive 2.233 1.179 1.624 1.399 1.009 1.627 1.907 4.595 1.142 1.321 0.95 1.123 0.684 0.827 0.884 1.165 0.899
Different Rates 1.84 1.715 2.41 2.165 0.972 1.972 3.243 6.61 1.479 1.906 1.399 1.366 0.706 0.642 1.029 1.454 1.546

BP4 REPTree 0.782 0.979 1.249 4.005 1.448 1.167 2.565 3.113 0.925 1.438 0.708 0.591 0.538 0.841 1.633 2.35 1.537
Lasso 74.725 19.534 44.328 3743.796 122.409 10.526 4310.414 85.3 10.16 18.171 6.482 9.859 8.585 5.559 4.887 6.18 1310.848

Scikit Learn 32.654 71.251 37.349 56.105 75.409 64.537 61.468 44.062 33.641 33.006 35.994 40.057 58.308 42.858 38.57 55.505 48.323
BP4A REPTree 2.863 1.169 1.558 2.062 0.781 1.619 1.886 4.415 1.022 1.49 1.537 1.385 0.91 1.415 0.835 1.897 1.397

Scikit Learn 204.655 203.663 192.772 198.467 191.264 178.164 208.586 204.726 184.522 192.713 186.326 197.194 201.328 204.377 203.64 205.414 163.618
Randomized 1.446 0.938 1.655 2.295 1.017 1.906 1.662 3.201 1.348 1.061 1.349 0.733 0.73 1.104 0.671 1.411 1.432

Larger Archive 1.259 1.387 1.387 2.115 0.842 1.556 1.509 2.864 1.613 1.129 1.151 1.206 0.83 1.091 1.056 1.627 1.099
Different Rates 1.313 0.826 1.612 2.425 0.727 1.839 2.051 4.254 1.266 1.094 0.8 1.176 0.602 1.398 0.803 4.092 1.135

Table B.6: Standard deviation of runtime in seconds.

44

Keij1 Keij11 Keij12 Keij13 Keij14 Keij15 Keij4 Keij5 Nguy10 Nguy12 Nguy3 Nguy4 Nguy5 Nguy6 Nguy7 Nguy9 Sext
GP 0.0 0.0 0.0 3.333 0.0 0.0 0.0 0.0 63.333 0.0 36.667 0.0 0.0 90.0 0.0 80.0 0.0

BP2A REPTree 0.0 3.333 0.0 3.333 0.0 0.0 0.0 0.0 33.333 0.0 10.0 0.0 0.0 43.333 0.0 30.0 0.0
Full Pop 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.333 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Scikit Learn 0.0 0.0 0.0 5.882 0.0 0.0 0.0 0.0 17.647 0.0 11.765 0.0 0.0 35.294 0.0 76.471 0.0
Randomized 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 13.333 0.0 6.667 0.0 0.0 60.0 0.0 70.0 0.0

Larger Archive 0.0 16.667 0.0 0.0 0.0 0.0 0.0 0.0 20.0 0.0 10.0 0.0 0.0 30.0 0.0 26.667 0.0
Different Rates 0.0 0.0 0.0 10.0 0.0 0.0 0.0 0.0 30.0 0.0 10.0 0.0 0.0 43.333 0.0 53.333 0.0

BP4 REPTree 0.0 0.0 0.0 3.333 0.0 0.0 0.0 0.0 0.0 0.0 43.333 0.0 0.0 46.667 0.0 40.0 0.0
Lasso 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 56.667 0.0 13.333 0.0 0.0 70.0 0.0 46.667 0.0

Scikit Learn 0.0 11.765 0.0 11.765 0.0 0.0 0.0 0.0 47.059 0.0 17.647 0.0 0.0 100.0 0.0 82.353 0.0
BP4A REPTree 0.0 3.333 0.0 0.0 0.0 0.0 0.0 0.0 23.333 0.0 10.0 0.0 0.0 33.333 0.0 20.0 0.0

Scikit Learn 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.882 0.0 11.765 0.0 0.0 35.294 0.0 52.941 0.0
Randomized 0.0 0.0 0.0 3.333 0.0 0.0 0.0 0.0 0.0 0.0 10.0 0.0 0.0 36.667 0.0 40.0 3.333

Larger Archive 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.667 0.0 10.0 0.0 0.0 20.0 0.0 33.333 0.0
Different Rates 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.667 0.0 23.333 0.0 0.0 26.667 0.0 16.667 0.0

Table B.7: Percentage of runs that generated a perfect individual.

45

46

Appendix C

Fixed Parameters

∙ Tournament size: 4

∙ Population size: 100

∙ Number of Generations: 250

∙ Maximum Program Tree Depth: 17

∙ Function set: {+,−, *, /, log, exp, sin, cos,−𝑥}

∙ Terminal set: Only the features in the data set.

47

48

Appendix D

Run Configurations

D.1 Key

∙ 𝜇: mutation rate

∙ 𝜒: crossover rate

∙ 𝛼: archive-based crossover rate

∙ 𝑓 : program error fitness function

∙ 𝑠: program size fitness function

∙ 𝑐: model complexity fitness function

∙ 𝑒: model error fitness function

D.2 Configurations

1. GP:

∙ Rates: 𝜇 = 0.1;𝜒 = 0.9;𝛼 = 0.0

∙ Fitness Functions: {𝑓, 𝑠}

∙ Archive Capacity: No Archive

∙ Model: No Model

2. BP2A - REPTree:

∙ Rates: 𝜇 = 0.1;𝜒 = 0.0;𝛼 = 0.9

49

∙ Fitness Functions: {𝑓, 𝑠}

∙ Archive Capacity: 50

∙ Model: REPTree run on the trace of each program in the population

3. BP2A - Full Pop:

∙ Rates: 𝜇 = 0.1;𝜒 = 0.0;𝛼 = 0.9

∙ Fitness Functions: {𝑓, 𝑠}

∙ Archive Capacity: 50

∙ Model: REPTree run on the combined traces of all of the programs in the

population

4. BP2A - Lasso:

∙ Rates: 𝜇 = 0.1;𝜒 = 0.0;𝛼 = 0.9

∙ Fitness Functions: {𝑓, 𝑠}

∙ Archive Capacity: 50

∙ Model: Lasso run on the trace of each program in the population

5. BP2A - Scikit Learn:

∙ Rates: 𝜇 = 0.1;𝜒 = 0.0;𝛼 = 0.9

∙ Fitness Functions: {𝑓, 𝑠}

∙ Archive Capacity: 50

∙ Model: Scikit Learn DecisionTreeRegressor run on the trace of each pro-

gram in the population

6. BP2A - Randomized:

∙ Rates: 𝜇 = 0.1;𝜒 = 0.0;𝛼 = 0.9

∙ Fitness Functions: {𝑓, 𝑠}

∙ Archive Capacity: 50

∙ Model: REPTree run on the trace of each program in the population, but

only the weights are kept. The subtrees corresponding to the weights that

50

are placed in the archive are drawn uniformly at random from the program

subtrees

7. BP2A - Larger Archive:

∙ Rates: 𝜇 = 0.1;𝜒 = 0.0;𝛼 = 0.9

∙ Fitness Functions: {𝑓, 𝑠}

∙ Archive Capacity: 150

∙ Model: REPTree run on the trace of each program in the population

8. BP2A - Different Rates:

∙ Rates: 𝜇 = 0.05;𝜒 = 0.0;𝛼 = 0.95

∙ Fitness Functions: {𝑓, 𝑠}

∙ Archive Capacity: 50

∙ Model: REPTree run on the trace of each program in the population

9. BP4- REPTree:

∙ Rates: 𝜇 = 0.1;𝜒 = 0.9;𝛼 = 0.0

∙ Fitness Functions: {𝑓, 𝑠, 𝑐, 𝑒}

∙ Archive Capacity: No Archive

∙ Model: REPTree run on the trace of each program in the population

10. BP4- Lasso:

∙ Rates: 𝜇 = 0.1;𝜒 = 0.9;𝛼 = 0.0

∙ Fitness Functions: {𝑓, 𝑠, 𝑐, 𝑒}

∙ Archive Capacity: No Archive

∙ Model: Lasso run on the trace of each program in the population

11. BP4- Scikit Learn:

∙ Rates: 𝜇 = 0.1;𝜒 = 0.9;𝛼 = 0.0

∙ Fitness Functions: {𝑓, 𝑠, 𝑐, 𝑒}

∙ Archive Capacity: No Archive

51

∙ Model: Scikit Learn DecisionTreeRegressor run on the trace of each pro-

gram in the population

12. BP4A- REPTree:

∙ Rates: 𝜇 = 0.1;𝜒 = 0.0;𝛼 = 0.9

∙ Fitness Functions: {𝑓, 𝑠, 𝑐, 𝑒}

∙ Archive Capacity: 50

∙ Model: REPTree run on the trace of each program in the population

13. BP4A- Lasso:

∙ Rates: 𝜇 = 0.1;𝜒 = 0.0;𝛼 = 0.9

∙ Fitness Functions: {𝑓, 𝑠, 𝑐, 𝑒}

∙ Archive Capacity: 50

∙ Model: Lasso run on the trace of each program in the population

14. BP4A- Scikit Learn:

∙ Rates: 𝜇 = 0.1;𝜒 = 0.0;𝛼 = 0.9

∙ Fitness Functions: {𝑓, 𝑠, 𝑐, 𝑒}

∙ Archive Capacity: 50

∙ Model: Scikit Learn DecisionTreeRegressor run on the trace of each pro-

gram in the population

15. BP4A- Randomized:

∙ Rates: 𝜇 = 0.1;𝜒 = 0.0;𝛼 = 0.9

∙ Fitness Functions: {𝑓, 𝑠, 𝑐, 𝑒}

∙ Archive Capacity: 50

∙ Model: REPTree run on the trace of each program in the population, but

only the weights are kept. The subtrees corresponding to the weights that

are placed in the archive are drawn uniformly at random from the program

subtrees

52

16. BP4A- Larger Archive:

∙ Rates: 𝜇 = 0.1;𝜒 = 0.0;𝛼 = 0.9

∙ Fitness Functions: {𝑓, 𝑠, 𝑐, 𝑒}

∙ Archive Capacity: 150

∙ Model: REPTree run on the trace of each program in the population

17. BP4A- Different Rates:

∙ Rates: 𝜇 = 0.05;𝜒 = 0.0;𝛼 = 0.95

∙ Fitness Functions: {𝑓, 𝑠, 𝑐, 𝑒}

∙ Archive Capacity: 50

∙ Model: REPTree run on the trace of each program in the population

53

54

Bibliography

[1] Ignacio Arnaldo, Krzysztof Krawiec, and Una-May O’Reilly. Multiple regression
genetic programming. In Proceedings of the 2014 Annual Conference on Genetic
and Evolutionary Computation, pages 879–886. ACM, 2014.

[2] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. A fast
and elitist multiobjective genetic algorithm: Nsga-ii. IEEE transactions on evo-
lutionary computation, 6(2):182–197, 2002.

[3] Pavlos S Efraimidis and Paul G Spirakis. Weighted random sampling with a
reservoir. Information Processing Letters, 97(5):181–185, 2006.

[4] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann,
and Ian H Witten. The weka data mining software: an update. ACM SIGKDD
explorations newsletter, 11(1):10–18, 2009.

[5] John R Koza. Genetic programming: on the programming of computers by means
of natural selection, volume 1. MIT press, 1992.

[6] Krzysztof Krawiec and Una-May O’Reilly. Behavioral programming: a broader
and more detailed take on semantic gp. In Proceedings of the 2014 Annual Con-
ference on Genetic and Evolutionary Computation, pages 935–942. ACM, 2014.

[7] James McDermott, David R White, Sean Luke, Luca Manzoni, Mauro Castelli,
Leonardo Vanneschi, Wojciech Jaskowski, Krzysztof Krawiec, Robin Harper, Ken-
neth De Jong, et al. Genetic programming needs better benchmarks. In Proceed-
ings of the 14th annual conference on Genetic and evolutionary computation, pages
791–798. ACM, 2012.

[8] Kirill Müller. Accelerating weighted random sampling without replacement. Ar-
beitsberichte Verkehrs-und Raumplanung, 1141, 2016.

[9] Kalyan Veeramachaneni, Ignacio Arnaldo, Owen Derby, and Una-May O’Reilly.
Flexgp. Journal of Grid Computing, 13(3):391–407, 2015.

55

	Introduction
	Related Work
	Basics of Genetic Programming
	Program Representations
	Generating New Programs
	Choosing Programs to Survive
	Termination

	Behavioral Genetic Programming
	Trace
	Model

	Implementation
	Codebase
	Genetic Programming Run
	Initialization
	Reproduction
	Evaluation
	Survival

	Extensions to Behavioral Genetic Programming
	Full Population Model
	Lasso Model
	Scikit Learn Model
	Randomized Model

	Experiments
	Setup
	Results

	Conclusion
	Contributions
	Future Work

	Data Sets
	Results
	Fixed Parameters
	Run Configurations
	Key
	Configurations

