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Objective

e Combine static program analysis with deep learning
approaches for PowerShell malware detection

Background

¢ Introduction
o Cyberadversaries use PowerShell (PS) scripts for
malicious purposes
o Previous attempts to use deep learning for PS
malware detection used character-level based
neural networks [1]

e Dataset
o 4,079 malicious PS scripts annotated and
classified based on their family types [2]
o Example: ShellCode Inject

e Definitions
o Abstract Syntax Tree (AST): tree representation of
syntactic structure of script made up of nodes
o AST Subtree: a non-leaf node and its immediate

children
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Malware Family Classification

e Data
o Classes: eight different malicious family types
o Each class has 40 or more examples in dataset
o Used 70:30 train:test split

e Experiment
o Classify script by family type

Technique: RandomForestClassifier
Input Features: (PS AST depth, number of nodes)
Output: Family Type

o Weighted classes during training based on
number of examples per class due to class
Imbalance

e Evaluation
o Heatmap for confusion matrix on the held out test
set suggests a well-performing model
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o PS script AST representations can be powerful for
malware detection

AST Node Representations

e Data
o Parsed each of 4,079 PS ASTs to its subtrees

o 62 different AST node types (i.e. ForStatement)

e Experiment
o Learn embedding vector representations of AST
nodes based on PS dataset using [3]'s methods

Technique: Unsupervised Stochastic Gradient Descent
Input: AST Subtrees of PS corpus
Output: Optimized vector representation of AST node types

o Optimized SGD until loss stabilized and tuned
hyperparameters
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e Evaluation
o Dendrogram of node types and their relationships
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o Promising preliminary results: (TryStatement,
CatchClause) and (ForStatement, DoWhile) node
types are neighbors

o Limitations: ForEachStatement and ForStatement
node types are not neighbors

Conclusions and Future Work

e AST-Based Deep learning techniques can be
effectively harnessed for malware detection




