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Abstract

Cyber adversaries are engaged in a perpetual arms
race. They are continuously maneuvering to outwit
the opposing posture. Replicating and studying the dy-
namics of these engagements provides a route to proac-
tive, adversarially-hardened cyber defenses. The con-
stant struggle can be computationally formulated as
a competitive coevolutionary system which generates
many arms races that can be harvested for robust so-
lutions. We present a paradigm, techniques and tools
that recreate the coevolutionary process in the context
of network cyber security scenarios. We describe its
current use cases and how we harvest defensive solu-
tions from it.

Introduction
The greatest concern a prepared cyber defender might
raise is: “What if my assumptions are wrong?” It is
common knowledge that the only certainty is that an
intelligent adversary will always keep trying to gain an
advantage. Moreover, once forced to react, a defender
is too late. So, how can a defender gain an edge in an
environment that is stacked to the attacker’s advantage,
where the defender seems doomed to always be one step
behind?

One approach is to deploy defensive configurations,
that consider multiple possible anticipated adversarial
behaviors and already take into account their expected
impact, goal, strategies or tactics. Note that the pre-
cise metrics in this accounting can vary, For example,
impact can be any combination of financial cost, dis-
ruption level or outcome risk. Or, a defender could
prioritize a worst case, average case or a trade-off con-
figuration.

One way that such configurations can be found is by
using stochastic search methods that explore the sim-
ulated competitive behavior of adversaries and gener-
ate multi-ranked configurations from which a (human)
defender can choose. In particular, the field of co-
evolutionary algorithms (Popovici et al. 2012) provides
search heuristics that specifically direct competitive en-
gagements between members of adversarial populations
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Figure 1: Alternating coevolutionary algorithm.

that undergo selection on the basis of performance with
opposing objectives and variation to adapt. This logic
results in population-wide adversarial dynamics. It can
culminate in the possible adversarial behaviors that a
defense would like to anticipate. For an example, see
Figure 1

A competitive coevolutionary algorithm can be a
component of a larger system, see Figure 2, in which
a second component sets up the environment for adver-
sarial engagement and measures the outcome for each
adversary. These measures can be used by the coevolu-
tionary algorithm to judge an adversary’s fitness.

Herein we summarize a framework that we
have used to generate robust defensive configura-
tions (Prado Sanchez 2018; Pertierra 2018). It is com-
posed of different coevolutionary algorithms that pro-
vide behavioral diversity. The algorithms, for further
differentiation, use different “solution concepts”, i.e.
measures of adversarial success. Because engagements
are frequently computationally expensive and have to
be pairwise sampled from two populations each genera-
tion, the framework has a number of enhancements that
enable more efficient use of a fixed budget of computa-
tion or time.
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Figure 2: Component overview of our coevolutionary
framework
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The framework supports a number of use-cases using
simulation and emulation of varying model granular-
ity. These include: A) Defending a peer-2-peer net-
work against Distributed Denial of Service (DDOS) at-
tacks (Garcia et al. 2017) B) Defenses against spread-
ing device compromise in a segmented enterprise net-
work (Hemberg et al. 2018), and C) Deceptive de-
fense against the internal reconnaissance of an adver-
sary within a software defined network (Pertierra 2018)
The framework is linked to a decision support module
named ESTABLO (Sanchez et al. 2018; Prado Sanchez
2018). The engagements of every run of any of the co-
evolutionary algorithms are cached and, later, ESTABLO
selects a subset of them for its compendium to combine
adversaries resulting from different algorithms. It then
competes the adversaries of each side against those of
the other side and ranks each side’s members according
to multiple criteria. It also provides visualizations of
adversarial behaviors and comparisons of their behav-
ior. These “products” inform the decision process of a
defensive manager.

The framework’s novel contributions are:
• A coevolutionary algorithms system of diverse

algorithms for preemptively investigating adversarial
arms races and dynamics that could occur.

• Use cases modeling a variety of adversarial threats
and defensive scenarios.

• A decision support module that supports selection
of a superior anticipatory defensive configuration.

Section Background briefly summarizes related work.
The coevolutionary method is described in Section
Framework Methods. In Section Use-cases of coevolu-
tionary algorithms in cyber security we provide exam-
ples of use-cases. Finally, a summary and future work
are in Section Conclusions.

Background
The strategy of testing the security of a system by try-
ing to successfully attack it is akin to that which under-
lies fuzzing (Miller, Fredriksen, and So 1990). Just as
software is tested by adaptive search for bugs, defenses
can be tested by adaptive attacks. In contrast, while
with software the bugs are fixed by humans and the base
retested, in cybersecurity our intent is to additionally
adapt defenses to counter attacks. Fuzzing is driven
by genetic algorithms whereas we will drive cyber arms
races in which both adversaries adapt using coupled
GAs called competitive coevolutionary algorithms.

We describe some related work in modeling and sim-
ulation and coevolutionary algorithms.

Modeling and Simulation
Modeling and simulation comprise a powerful approach,
“mod-sim”, for investigating general security scenar-
ios (Tambe 2012) and computer security in particu-
lar (Thompson, Morris-King, and Cam 2016; Lange et
al. 2017; Winterrose and Carter 2014). Mod-sim is often
necessary because search and outcome spaces are too

complex to derive analytical solutions while testbeds
can incur long experimental cycle times and often do
not abstract away irrelevant detail. Mod-sim systems
range in complexity, level of abstraction and resolution.

Coevolutionary Search Algorithms
Coevolutionary algorithms, related to evolutionary al-
gorithms (Bäck 1996), explore domains in which the
quality of a candidate solution is determined by its abil-
ity to successfully pass some set of tests. Reciprocally, a
test ’s quality is determined by its ability to force errors
from some set of solutions. In competitive coevolution,
similar to game theory, the search can lead to an arms
race between test and solution, both evolving while pur-
suing opposite objectives (Popovici et al. 2012).

Coevolutionary algorithms can encounter problem-
atic dynamics where tests are unable improve solu-
tions, or drive toward a solution that is the a priori
intended goal. There are accepted remedies to specific
coevolutionary pathologies (Bongard and Lipson 2005;
Ficici 2004; Popovici et al. 2012). They generally
include maintaining population diversity so that a a
search gradient is always present and using more ex-
plicit memory, e.g. a Hall of Fame or an archive, to pre-
vent regress (Miconi 2009). The pathologies of coevolu-
tionary algorithms are similar to those encountered by
GANs (Goodfellow et al. 2014; Arora et al. 2017)

A related example to our framework in the domain
of cyber security is CANDLES – the Coevolutionary,
Agent-based, Network Defense Lightweight Event Sys-
tem (Rush, Tauritz, and Kent 2015). It is designed to
coevolve attacker and defender strategies in the context
of a single, custom, abstract computer network defense
simulation.

Framework Methods
Coevolutionary Algorithms
A basic coevolutionary algorithm evolves two popula-
tions with e.g. tournament selection and for variation
uses crossover and mutation. One population comprises
attacks and the other defenses. In each generation,
competitions are formed by pairing attack and defense.
The populations are evolved in alternating steps: first
the attacker population is selected, varied, updated and
evaluated against the defenders, and then the defender
population is selected, varied, updated and evaluated
against the defenders. Each attacker–defender pair is
dispatched to the engagement component to compete
and the result is used as a component of fitness for
each of them. Fitness is calculated over all an adver-
sary’s engagements.

The framework support diverse behavior through al-
gorithms that vary in synchronization of the two pop-
ulations and solution concepts. (Prado Sanchez 2018;
Pertierra 2018). Working within a fixed time or fit-
ness evaluation budget, the framework 1. caches en-
gagements to avoid repeating them 2. uses Gaussian
process estimation to identify and evaluate the most



uncertain engagement (Pertierra 2018) 3. uses a rec-
ommender technique to approximate some adversary’s
fitnesses (Pertierra 2018) 4. uses a spatial grid to re-
duce complete pairwise engagements to a Moore neigh-
borhood quantity(Mitchell 2006; Williams and Mitchell
2005).

Decision support
Competitive coevolution has the following chal-
lenges (Sanchez et al. 2018; Prado Sanchez 2018): 1. So-
lutions and tests are not on comparable on a “level play-
ing field” because fitness is based solely on the context
of engagements. 2. Blind spots, unvisited by the al-
gorithms may exist. 3. From multiple runs, with one
or more algorithms, it is unclear how to automatically
select a “best” solution.

Our decision support module, ESTABLO, see Figure 3,
addresses these challenges. ESTABLO: 1. runs competi-
tive coevolutionary search algorithms with different so-
lution concepts. 2. combines the best solutions and
tests at the end of each run into a compendium. 3. com-
petes each solution against different test sets, including
the compendium and a set of unseen tests, to measure
its performance according to different solution concepts.
4. selects the “best” solutions from the compendium us-
ing a ranking and filtering process. 5. visualizes the
best solutions to support a transparent and auditable
decision.

Use-cases of coevolutionary algorithms
in cyber security

In computer security, guidance is sparse on how to pri-
oritize or configure the many defensive postures, if it is
available at all. In this section we demonstrate use-cases
of how a coevolutionary algorithm framework can iden-
tify defensive configurations that are effective against
a range of adversaries and scenarios in the attack kill-
chain.

DOS attacks on peer-to-peer networks
A peer-to-peer network is a robust and resilient means
of securing mission reliability in the face of extreme
DDOS attacks. The project named RIVALS (Garcia
et al. 2017) assist in developing network defense strate-
gies through modeling adversarial network attack and
defense dynamics to help identify robust network de-
sign and deployment configurations that support mis-
sion completion despite an ongoing attack. Rather than
manually tune and invent defense postures for a net-
work every time an attacker adapts and acts, RIVALS
assists during network design and hardening with the
goal of anticipating attack evolution and identifying a
robust defense that can circumvent the arms race and
the reactive counter-measures. It uses coevolutionary
algorithms to generate evolving network attacks and to
evolve network defenses that effectively counter them.

RIVALS models DOS attack strategies by the at-
tacker selecting one or more network servers to dis-

able for some duration. Defenders can choose one
of three different network routing protocols: shortest
path, flooding and a peer-to-peer ring overlay to try to
maintain their performance. Attack completion and re-
source cost minimization serve as attacker objectives.
Mission completion and resource cost minimization are
the reciprocal defender objectives. RIVALS’ has a
suite of coevolutionary algorithms that use archiving
to maintain progressive exploration and that support
different solution concepts as fitness metrics. Our ex-
periments show that existing algorithms either sacrifice
execution speed or forgo the assurance of consistent re-
sults.

Availability attacks on segmented networks
Attackers do not always simply disrupt networks, in-
stead they often introduce malware into networks.
Once an attacker has compromised a device on a net-
work, they can move to connected devices, akin to
contagion. Here we consider network segmentation,
a widely recommended defensive strategy, deployed
against the threat of serial network security attacks that
delay the mission of the network’s operator (Hemberg
et al. 2018).

We assume a network supports an enterprise in car-
rying out its business or mission, and that an adver-
sary employs availability attacks against the network
to disrupt this mission. Specifically, the attacker starts
by using an exploit to compromise a vulnerable device
on the network. This inflicts a mission delay when a
mission critical device is infected. Then, the attacker
moves laterally to compromise additional devices and
maximally delay the mission.

Here, we examine a defensive measure called net-
work segmentation, which divides the network topolog-
ically into enclaves that serve as isolation units to deter
inter-enclave contagion. Network segmentation design
is a tradeoff space: a more segmented network provides
less mission efficiency because of increased overhead
in inter-enclave communication. However, smaller en-
claves contain compromise by limiting the spread rate,
and their cleansing incurs fewer mission delays. Net-
work operators can also use monitoring capabilities and
network cleansing policies to detect and dislodge attack-
ers.

We employ a simulation model to investigate the ef-
fectiveness over time of different defensive strategies
against different attack strategies. The defender de-
cides placement of mission devices and tap sensitivities
in the enclaves. The attacker decides the strength, du-
ration and number of attacks in a an attack plan. For a
set of four network topologies, we generate strong avail-
ability attack patterns that were not identified a priori.
Then, by combining the simulation with a coevolution-
ary algorithm to explore the adversaries’ action spaces,
we identify effective configurations that minimize mis-
sion delay when facing the attacks. The application of
coevolutionary computation to enterprise network se-
curity represents a step toward course-of-action deter-
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Figure 3: Overview of the ESTABLO framework for decision support through selection and visualization by using a
compendium of solutions from coevolutionary algorithms.

mination that is robust to responses by intelligent ad-
versaries.

Internal reconnaissance in Software Defined
Networks
Once an adversary has compromise a network endpoint,
they perform reconnaissance of the network (Sood and
Enbody 2013). After they have a view of the network
and an understanding of where vulnerable nodes are lo-
cated, they are able to execute a plan of attack. One
way to protect against this is by obfuscating the net-
work and delaying the attacker. A software defined
network (SDN) can facilitate this, an SDN is a pro-
grammable network mostly used in cloud data centers
(Kirkpatrick 2013). Thus, the SDN controller knows
which machines are actually on the network and can
control the network view for each machine, as well as
place decoys(honeypots) on the network.

One such multi-component deceptive defense system
(Achleitner, Laporta, and McDaniel 2016), foils scan-
ning by generating “camouflaged” versions of the actual
network and providing them to hosts when they renew
their DHCP leases. We implemented a coevolutionary
algorithm in order to explore the relationship between
attacker and defender on a deceptive network (Pertierra
2018). This approach is used to discover optimal de-
fender configurations to combat against malicious ad-
versaries.

Using the deception system (Achleitner, Laporta,
and McDaniel 2016), a modified POX SDN controller,
we simulate a deceptive network with mininet (Team
2018). We run NMAP scans mimicing a node that is
compromised and is performing reconnaissance on the
network (Lyon 2018). The attacker behavior is: which
IP addresses to scan, how many IP addresses to scan,
which subnets to scan, the percent of the subnets to
scan, the scanning speed, and the type of scan. The
defender decisions are: the number of subnets to setup,
the number of honeypots, the distribution of the real
hosts throughout the subnets, and in our scenario the
number of real hosts that exist on the network. The
fitness scores are comprised of four components: how
fast the defender detects that there is a scan taking
place, the total time it takes to run the scan, the num-
ber of times that the defender detects the scanner, and
the number of real hosts that the scanner discovers.
Through experimentation and analysis, we discover cer-
tain configurations that the defender can use to signif-
icantly increase it’s ability to detect entities that are
scanning the network. Similarly, there are specific con-
figurations that the attacking nodes can use to have a

better chance of being undetected.

Conclusion
We have described a paradigm that recreates the ad-
versarial, competitive coevolutionary process in the do-
main of network cyber security scenarios in an abstract
way. We presented its current use cases and how we har-
vest defensive solutions from it. Future work includes
examining to more cyber security applications, more
realistic engagements and more efficient algorithms.
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