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We apply Grammatical Evolution(GE), and multi population competitive
coevolutionary algorithms to the domain of cybersecurity. Our interest (and
concern) is the evolution of network denial of service attacks. In these cases,
when attackers are deterred by a specific defense, they evolve their strategies
until variations find success. Defenders are then forced to counter the new vari-
ations and an arms race ensues. We use GE and grammars to conveniently ex-
press and explore the behavior of network defenses and denial of service attacks
under different mission and network scenarios. We use coevolution to model
competition between attacks and defenses and the larger scale arms race. This
allows us to study the dynamics and the solutions of the competing adversaries.

1 Introduction
Cyber attacks have increased in frequency, sophistication, and severity, and have
been the cause of numerous disruptions. Denial of service attacks target com-
puter networks because critical data and transactions now flow through them.
As a result, it is crucial to not only be aware of the capabilities of cyber at-
tackers, but also to design more secure networks. The issue with the current
state of cyber defenses, however, is that they are largely reactive in nature.
It is sometimes only when an attack is experienced that a network defense is
strengthened. When attackers consequently alter their strategies, the of reac-
tive defensive behavior repeats. Our goal is to investigate this coevolutionary
arms race in order to shed light on its dynamics and identify robust defenses in
advance of deployment.

Grammatical Evolution, see Figure 1, is initialized with a grammar expressed
in Backus Naur Form (BNF) and search parameters. The grammar describes a
language in the problem domain and its (rewrite) rules express how a sentence,
i.e. solution, can be composed by rewriting a start symbol, i.e. high level goal.
In our system’s GE component, the BNF description, upon input, is parsed to
a context free grammar representation. GE genotypes are fixed length integer
vectors. Sentences of the grammar are GE phenotypes. To decode a genotype,
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Fig. 1: Grammatical Evolution takes a BNF grammar and search parameters as
input. The grammar rewrites the integer input to a sentence. Fitness is calcu-
lated by interpreting the sentence and then evaluate it. The search component
modifies the solutions using two central mechanisms: fitness based selection and
random variation. We use coevolutionary algorithms.

in sequence each of its integers is used to control the rewriting. This sentence
is the phenotype. Fitness is calculated by interpreting the sentence and then
evaluating it according to some objective(s). When we use our system to solve
different problems, we only have to change the BNF grammar, the interpreter
and the fitness function for each problem, rather than change the genotype rep-
resentation. This modularity of GE and the reusability of the GE parser and
rewriter are efficient software engineering and problem solving advantages. The
grammar further helps us communicate our system’s functionality to stakehold-
ers because it enables conversations and validation at the domain level rather
than at the algorithm level. This contributes to stakeholder confidence in solu-
tions and our system.

Our system is named RIVALS [9]. Rather than manually tune and invent
defenses for a network every time an attacker adapts and acts in a novel way,
RIVALS assists during network design and hardening with the goal of anticipat-
ing attack evolution and identifying a robust defense that can circumvent the
arms race and the reactive counter-measure postures. It uses coevolutionary
algorithms [19] (and GE) to generate evolving network attacks and to evolve
network defenses that effectively counter them, see Figure 2. RIVALS’s research
is grounded by focusing on peer-to-peer networks, specifically the Chord proto-
col, and extreme distributed denial of service (DDOS) attacks. A peer-to-peer
network is a robust and resilient means of securing mission reliability in the
face of extreme DDOS attacks. RIVALS’ premise is that its attention to the
coevolutionary nature of attack and defense dynamics will allow it to help iden-
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Fig. 2: RIVALS system overview. Defenders are marked in blue and attackers
in red.

tify robust network design and deployment configurations that support mission
completion despite an ongoing attack.

RIVALS currently includes a peer-to-peer network simulator that runs the
Chord [22] protocol. It models simple attacks and defenses on networks run-
ning on the simulator. It measures the performance of attackers and defenders
through the concept of a mission. A mission represents a set of tasks to be
completed. These tasks rely on the network’s quality of service to succeed. An
attacker’s goal is to degrade the network so that the tasks, and in extension
the mission, fail. Meanwhile, a defender’s goal is to ensure the success of the
mission. Mission completion and resource cost metrics serve as attacker and de-
fender measures of success. DDOS attacks in RIVALS are modeled as multiple
nodes being selected and, from a start time, being completely disabled for some
duration.

To model the co-adaptive behavior of adversaries, RIVALS sets up separate
populations of attackers and defenders and coevolves them under the direction
of a coevolutionary algorithm. Over the course of many generations, a coevolu-
tionary optimization process reveals dual collections of more effective defender
and attacker strategies. At this point in time RIVALS has a a suite of different
coevolutionary algorithms with grammars for two simple problems. The algo-
rithms explore archiving as a means of maintaining progressive exploration and
support the evaluation of different solution concepts. All algorithms in our suite
reuse the parser and rewriter component of GE.

The rest of this paper is organized as follows. In Section 2, we introduce
similar work as well as necessary background information on peer-to-peer attacks
and coevolutionary algorithms. Next, in Section 3, we present a brief overview
of RIVALS. Section 4 presents the our experimentation and Section 5 shows the
results. Finally, Section 6 concludes the paper and discusses potential future
directions.

2 Related Work
Our project investigates proactive cybersecurity modeling by means of GE and
coevolutionary search algorithms. This section of related work and background
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information considers cyber security, coevolutionary algorithms and GE in dif-
ferent combinations. In Section 2.1 we discuss projects at the intersection of
evolutionary algorithms and cyber security, comparing them to RIVALS where
relevant. In Section 2.2 we differentiate coevolutionary search algorithms from
other EAs, independent of GE, and in Section 2.3 we discuss systems at the
intersection of GE and coevolution. To date RIVALS is the only system that
combines GE and coevolution in order to investigate a problem in the domain
of cybersecurity.

2.1 Cyber Security and Evolutionary Algorithms
Moving Target Defense (MTD) projects, like RIVALS, use Evolutionary Algo-
rithms (EAs) in a cybersecurity problem domain. The strategy of a MTD is
to keep an attacker off guard by continually changing system configurations or
information that the attacker needs to effectively attack. Strategies could in-
volve changing the software underlying platforms, the location of sensitive data
or the timing of system functions. For example, the system of [25] uses a GA
to evolve adaptable adversarial strategies for defense against zero-day exploits.
The system only adapts a defender population while RIVALS adapts both de-
fender and attacker populations. In another contrast, it encodes strategies as
binary chromosomes that represent finite state machines whereas RIVALS’ uses
a context free grammar. Arguably the important difference between RIVALS
and this system is that evolution is used to address only two fixed scenarios while
in RIVALS attackers compete with multiple defenders and defenders compete
with multiple attackers.

Another work in this context and related to RIVALS is the coevolutionary
agent-based network defense lightweight event system (CANDLES) [20]. It is
designed to coevolve attacker and defender strategies in the context of a custom,
abstract computer network defense simulation. CANDLES’ attack and defense
strategies are not expressed with grammars.

2.2 Coevolutionary Search
Coevolutionary algorithms are well suited to domains that have no intrinsic ob-
jective measure, also called interactive domains [19]. They can be distinguished
as two types: a) Compositional coevolutionary algorithms that are used to solve
problems where a solution involves interaction among many components that
together might be thought of as a team. This is often called cooperative coevo-
lution. b) Test-based coevolutionary algorithms that are used when the quality
of a potential solution to the problem is determined by its performance when
interacting with some set of tests. This is often called competitive coevolution.

Competitive coevolutionary algorithms are often applied in game search [19].
They are also related to game theory [19]. One advantage over game theory is
that coevolutionary algorithms can be applied to larger search spaces [20].

There are a variety of examples of coevolutionary projects. One more the-
oretical project has investigated solution concepts for testcase coevolution with
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a no free lunch framework [23]. Others address application domains such as
streaming data classification [12], complexification of solutions [21], simulations
of behavior and bug fixes [16].

2.2.1 Solution Concepts for Coevolutionary Algorithms

Coevolutionary algorithms differ from other EAs in one respect because they
have two interacting populations. These dual populations imply that the al-
gorithm explores domains in which the quality of a solution is determined by
its performance when interacting with a set of tests. In return, a test’s quality
is determined by its performance when interacting with some set of solutions.
For example, the tests of a network attack strategy are different network rout-
ing behaviors that could resist the attack, and inversely the tests of a network
behavior are different attack strategies that could disrupt the network.

Because a solution’s performance is measured against multiple tests, coevo-
lutionary algorithms use solution concepts to express fitness and clarify what
constitutes a superior solution [19]. Solution concepts include:

Best Worst Case A solution’s fitness is its worst performance against the
set of tests that it tries to solve or its performance against the fittest test case.
The coevolutionary algorithm’s goal is to optimize the best worse case solution.

Maximization of Expected Utility A solution’s fitness is its average per-
formance against the test cases. It is usually assumed that tests have equal im-
portance. The coevolutionary algorithm’s goal is to optimize the average case
solution.

Nash Equilibrium Solutions which lead to stable solution states in which
no sole actor can their improve their state unilaterally are preferred. The co-
evolutionary algorithm’s goal is to find solutions at a Nash equilibrium.

Pareto Optimality Each test is considered to be an independent objective
and a solution is a multi-dimensional datum in this multi-objective space. From
this space, a pareto optimal (non-dominated) set of solutions can be identified
as superior solutions.

It should also be noted that the interactive aspect of solution fitness also
implies the algorithm lacks an exact fitness measurement. That is, usually,
Evolutionary Algorithms rely upon a fitness function, a function of the form
f : G 7→ R that assigns a real value to each possible genotype in G. Individual
solutions are compared as f(g0) with f(g1) and their relative ranking based on
fitness is always the same, i.e. exact. In contrast, in coevolutionary algorithms
two individuals are compared based on their interactions with other individuals.
and because these individuals are only samples from a population and may
change as a population undergoes evolution, the ranking of an individual relative
to another solution is essentially an estimate.

We now describe a set of coevolutionary algorithm challenges and how they
are remedied.
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2.2.2 Coevolutionary algorithm challenges and remedies

Coevolutionary algorithms are challenging to work with because we have limited
understanding of their detailed dynamics. Their two populations and dynamic
solution concepts make them harder to interpret. [7]. The search driver, i.e. the
selection pressure, is difficult to control because fitness measurements are only
estimates. Fitness estimation makes it hard to precisely determine whether the
algorithm is making productive progress. [19]. The problem of local optima still
exists as it does with other EAs. The arms race we use coevolutionary algorithms
for, in fact does not automatically appear since tests can be uninteresting, or not
conform to some a priori goal [7]. This requires vigilant design and monitoring.

Coevolutionary search and optimization exhibits some unique pathologies
that again arise from fitness being measured as a result of one or more inter-
actions. One pathology is intransitivity, i.e. non transitive relations can exist
between the competing solution spaces. [7]. For example, consider the intran-
sitive cycle in Rock-Paper-Scissors where Rock beats Scissors, Scissors beats
Paper, and Paper beats Rock. [14, 4, 7]. Some intransitive pathologies are:

Red Queen Effect Two populations continuously adapt to each other and
their subjective fitness improves, but they fail to make any consistent
progress along the objective metric. Conversely, they do make progress
but the fitness estimate does not reflect this and falsely indicates a lack
of progress. [4]

Cycling The adversary (whether solution or test) drops some element of selec-
tion pressure so abilities can be “forgotten” only to reuse them.

Transitive dominance One solution can be superior to a test that at the
same time is superior to the solution according to a different conflicting
subjective metric [4].

A general remedy to intransitivity is to maintain diversity and make sure an
informative search gradient is always available. Another remedy is to explicitly
assure that useful tests persist. This can be accomplished by introducing mem-
ory. Memory is usually implemented by means of an archive (see Figure 3),
a repository of solutions that is maintained outside the algorithmic cycle of
generational selection and variation, something like a Hall of Fame.

Another pathology is disengagement [4]. This occurs when one population
is constantly superior to the other. At this point the subjective fitnesses of both
populations become constant so there is no differential selection pressure and the
search gradient is lost. Drift results.. Memory also helps address disengagement.
Another remedy is to search explicitly for lower difficulty tests by looking for
those which create less disagreement among solutions [4].

Memory, of course, also addresses cycling by preventing a test that selects
for a solution from evolving out of the population.
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Fig. 3: A coevolutionary algorithm with two archives.

2.3 Coevolution and Grammatical Evolution
GE has previously been used in tandem with coevolutionary algorithms. In
one use case, [6], coevolution and GE are used together to cope with dynamic
environments. The GEGE method aims to find “modules” that can be reused
when the environment changes, it has a compact representation of a larger
grammar with an increased search space and strongly coupled grammars [3]. It
uses cooperative coevolution to simultaneously evolve the grammar and genetic
code with a hierarchy of grammars [6].

One study, [17, 18], used both GE and a Pareto-coevolutionary algorithm in
a supervised machine learning context to train classifiers with a multi-objective
fitness measure. It reformulated training data as a tw -population competition.
Another study used both GE and coevolution to develop an Artificial Life model
for evolving a predator–prey ecosystem of mathematical expressions [2]. Coevo-
lutionary algorithms with GE have also been applied to financial trading using
multiple cooperative populations [1, 8].

In one competitive coevolution and GE example, spatial coevolution in age-
layered planes evolves robocode for robots [10]. In another, in the STEALTH
(Simulating Tax Evasion And Law Through Heuristics) [11] project, a coevolu-
tionary and modeling methodology is used to explore how non-compliant tax
strategies evolve in response to abstracted auditing and regulatory attempts
that evolve to detect them. STEALTH shares the arms race element of this
chapter’s work because in taxation, similar to cybersecurity, as soon as an eva-
sion scheme is detected and stopped, a new, slightly mutated, variant of the
scheme appears.
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3 Methods
In this section we describe the methods we use. We present them in the following
order: peer-to-peer networks in Section 3.1, the RIVALS network simulator
in Section 3.2, coevolutionary algorithms that use archives in Section 3.3 and
grammar representations for cybersecurity in Section 3.4. Because grammars
are expressions of problem solving behavior, Section 3.3 also introduces the two
problems we use to demonstrate RIVALS.

3.1 Peer-to-Peer Network
DDOS attacks often target a specific server within a network. By overloading
this server with work, the server effectively becomes useless and the network
struggles to route traffic through it. In a centralized network an attacker could
attack its key central server, e.g. the server that is responsible for directing
traffic to all the other servers, and take down the entire network. Peer-to-peer
networks are not so fragile. They distribute data and resources with redundancy
and thus have no single point of failure making them inherently more robust to
DDOS attacks. Peer-to-peer networks are also robust to topological changes.
They can continue to function even as nodes drop out as what may happen
during a DDOS attack. They also can integrate additional nodes should they
come back online. As an example, the Chord protocol includes a stabilization
service handles nodes that are joining and leaving the network.

3.1.1 Chord Overview

We now briefly describe important elements of the Chord protocol (for more
details see [22]) and our implementation of it. A peer-to-peer network is an
overlay of a physical network. In Chord the logical network topology is a ring.
Location-wise, each peer has a successor node and a predecessor node in the
ring. Requests for data from a node need to be looked up to identify which
node has the data and the node needs to be efficiently accessed. For lookup
Chord uses distributed key hashing. For routing Chord relies upon node-based
finger tables. A finger table is a look-up table for neighboring peers. Each table
holds information that helps to logarithmically decrease the cost of finding which
node holds a queried key. The Chord protocol includes a stabilization service
handles nodes that are joining and leaving the network.

3.2 RIVALS Network Simulator
In RIVALS we currently model Chord on a single workstation. Upon nodes
leaving or joining the network, the original Chord protocol eventually stabilizes
itself through periodic actions. In RIVALS’ implementation every time a node
leaves or joins the network, successor and predecessor pointers as well as the
finger tables are immediately repaired. In RIVALS nodes in the Chord network
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Fig. 4: Physical network on the left and its virtual(logical) Chord overlay rep-
resentation on the right. The finger tables for nodes A, G, and F are shown.

become part of the circle by receiving an m-bit identifier obtained by hashing
the nodes with SHA-11.

The network simulator has two versions. One version, we call the “logical”
version, and the other the “logical to physical” version. The differences between
these two versions of the software are explained in the next two subsections.

3.2.1 Logical network

The reason we name this version the “logical” version is because we assume the
message gets sent via the hop series defined by the logical network. Figure 4
shows a simple physical network on the left, and the virtual (logical) Chord
overlay network that gets constructed by the protocol on the right. In this
example, if we are interested in finding a specific key in the network, we can ask
any peer and that peer will use its finger table information to route the query
to some peer that is closer to the target peer containing the desired key in the
identifier circle. This series of queries provides a hopping series of the nodes
visited before reaching the target node with the key. For example, if we ask
node F where the key with identifier 3 is, it would pass the query to node A,
and then node A would find that the key is located at node C. This results in
a hopping series of F, A, C. In the simulator implementation, rather than use
the protocol as a means of finding a key in the network, we use it as a means
to represent the sending of a message through the network. We achieve this
by asking the peer we consider the starting node, or the node responsible for
sending the message, to find the identifier associated with the target node. In
this sense, the difference is that we now use the protocol to lookup target node
identifiers instead of key identifiers.

1In RIVALS’ implementation, Python’s random library is used.
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Tab. 1: Coevolutionary algorithms used in RIVALS

Name Archives Solution Concept
Coev 0 Maximum Expected Utility
MinMax 0 Best Worst Case
MaxSolve 2 Maximum Expected Utility
IPCA 1 Pareto Optimality
rIPCA 2 Pareto Optimality

3.2.2 Logical to Physical network

The key difference between the “logical” version and the “logical to physical”
version of the simulator is that this version increases the complexity and real-
ism by simulating messages flowing through the physical layer of the network
as opposed to just through the virtual Chord overlay ring. As a result, in this
version, when sending a message, instead of modeling this as the message hop-
ping through the ring and reaching its destination, each hop from one node to
another overlays the message passing from the equivalent nodes but along the
routes and routers of the actual physical network.

3.3 Coevolutionary Algorithms with Archives
In RIVALS we use multiple solution concepts and coevolutionary algorithms
with GE, see Table 1. Our baseline algorithm, named Coev, is a simple coevolu-
tionary algorithm without an archive [11] that uses a maximum expected utility
solution concept. When it is configured to use a best worst solution concept
instead, we call it MinMax. A third algorithm, MaxSolve uses the maximum
expected utility solution concept and both a solution and a test archive [5]. It
manages archive growth with a hard maximum size limit. Upon reaching max-
imum size, it winnows the archive according to how many attacks a defender
resists or vice-verse, how many defense an attack is effective against. Our fourth
algorithm is Incremental Pareto-Coevolution Archive technique (IPCA), shown
in Algorithm 1. IPCA uses a solution archive and the Pareto Optimal Set so-
lution concept [13]. The archive is maintained by selecting solutions that are
not dominated by other solutions in terms of which tests they solve, i.e. are
useful. That is, if a solution, X, only solves tests A and B, and solution, Y ,
only solves test A, then solution X dominates Y and Y is removed from the
archive. This provides monotonic evolutionary progress. Finally, our fifth algo-
rithm is is rIPCA, an extension of IPCA [9]. rIPCA applies the Pareto Optimal
Set solution concept to both solution and test populations, as opposed to just
the solution population as done in IPCA (see ALG.1 line 9). This unfortunately
erases the monotonicity property of IPCA but it provides memory to both ad-
versaries, rather than just one. For more details of rIPCA see [9]. In both IPCA
and rIPCA we consider a solution to be a defense and a test to be an attack.
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Algorithm 1 IPCA, rIPCA

1: procedure IPCA(populations, generations)
2: t← 0
3: D0 ← populationsdefenders . Defender is solution
4: A0 ← populationsattackers . Attacker is test
5: D∗, A∗ ← ∅ . Best solutions
6: while t < generations do . Iterate for # generations
7: At ← NonDominated(Dt, At) . Extract attacker pareto-front
8: if rIPCA then
9: Dt ← NonDominated(At, Dt) . Extract defender pareto-front

10: D ← GenerateDefenders(Dt)
11: A← GenerateAttackers(At)
12: A′ ← UsefulAttackers(A, At, D, Dt) . Get useful attackers
13: At+1 ← At+1 ∪A′

14: Dt+1 ← Dt

15: for i = 1..|D| do
16: if UsefulDefender(Di, Dt+1, At+1) then . Get useful defenders
17: Dt+1 ← Dt+1 ∪Di

18: if Dt+1 6= Dt then
19: t← t + 1
20: D∗, A∗ ← ExtractBest(Dt+1, At+1)
21: return D∗, A∗ . Returns best solutions found
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3.4 Problems and Grammars in RIVALS
RIVALS uses grammars to facilitate the expression and exploration of attack
sequences and defender strategies. The grammars are very helpful in allowing
domain knowledge to be naturally expressed. The ease of use of GE currently
outweighs our concern regarding the low locality of GE operators [24]. We have
two central grammars which each correspond to a problem we experiment with.

3.4.1 Mobile Asset Placement

The mobile asset placement problem is to optimize the strategic placement
of assets in a network. In a mission scenario we assume this optimization is
determined before a mission and that the optimization only addresses assets
which can feasibly be moved from one node to another or spun up at different
nodes, i.e. that are “mobile”.

While under the threat of node-level DDOS attack, the defense must enable
a set of tasks. It does this by fielding feasible paths between the nodes that
host the assets which support the tasks. A mobile asset is, for example, mobile
personnel or a software application that can be served by any number of nodes.
A task is, for example, the connection that allows a personnel member to use a
software application. We show the concept of a task as a dashed line connecting
nodes in Figure 5. Attacks are models of DDOS attacks where a variable number
of specific nodes are targeted and disabled. Any disabled node is considered
unreachable. Thus an attack must take down the nodes which host assets that
support the tasks and consequently cause mission failure.

For example in Figure 5 there are three tasks that need to be completed using
six different assets. The physical network topology of the example is shown in
Figure 5a. The virtual (logical) overlay with the three tasks and assets are
shown in Figure 5b. An attack that results in a failed task on the network is
shown in Figure 5c.

To round out the definition of a problem it is necessary to state the fitness
function of the attacker and of the defender. We state these in Section 4.2.

In the problem’s defense grammar, each task is defined by its assets and
where they are hosted. We currently assume a one-to-one mapping between
assets and node identifiers, i.e. the node identifier is the same as the asset
identifier.

The attack grammar for Figure 5a, Topology 0, given start symbol <Attacks>
is:

<Attacks> ::= DDOSAttack(<node>)
| DDOSAttack(<node>), <Attacks>

<node> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6

The corresponding grammar for the defending population with start symbol
<list> is:

<list> ::= [Task1(<assets1>, <assets1>), Task2(<assets1>, <assets1>),
Task2(<assets1>, <assets1>), Task3(<assets1>, <assets1>),
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Fig. 5: Mobile asset placement problem example of physical network topology
(Figure 5a), tasks on the virtual topology (Figure 5b) and an attack (Figure 5c).
Dashed lines indicate the assets that are needed for the different tasks.

Task5(<assets1>, <assets1>), Task6(<assets1>, <assets1>)]
<assets1> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6

Note that by defining different sets of assets the grammar can express con-
straints as to where assets can be hosted. By defining different nodes in the
attack grammar, it is possible to express only the nodes reachable by the set
of botnet compromised nodes. Also note that while the grammars are low level
abstractions of attacks or defenses, this allows generality in the sense that they
belie any number of mission or attack goals, strategies, techniques and tactics
at a higher level by the attacker or defender. Finally, note that with a more
complex simulator or an actual network testbed, a simple grammar change could
express task ordering and dependency.

3.4.2 Network routing

The network routing problem is to complete a mission that is composed of
tasks. All tasks must complete for the mission to 100% succeed. Each task is
completed if source and destination nodes can be connected within a specified
time interval, e.g. a message can be sent between them.

The current RIVALS attack grammar for describing the behaviors in the
network routing problem is simple. An attack is one or more identifications of
a node, when it will start to be attacked and the duration of the attack. Given
start symbol <Attacks>, it is:

<Attacks> ::= DDOSAttack(<node>, <start_time>, <end_time>)
| DDOSAttack(<node>, <start_time>, <end_time>), <Attacks>

<node> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6
<start_time> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<end_time> ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
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Note that the grammar is recursive and this allows an attack to target one
or more several nodes.

An example of the attack grammar used in the logical to physical version of
the simulator upon receiving the start symbol <Attacks> is:

<Attacks> ::= {’physical_attacks’: [<physical_attacks>],
’logical_attacks’: [<logical_attacks>]}

<physical_attacks> ::= DDOSAttack(<node>, <start_time>, <end_time>),
<physical_attacks>

| DDOSAttack(<node>, <start_time>, <end_time>)
<logical_attacks> ::= DDOSAttack(<node>, <start_time>, <end_time>),

<logical_attacks>
| DDOSAttack(<node>, <start_time>, <end_time>)

<node> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6
<start_time> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<end_time> ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

In this grammar, because both the physical and virtual networks are utilized
to represent the flow of a message, an attacker is allowed to target nodes at both
the physical and virtual layers. The defense grammar in both versions of the
simulator is simple because the problem assumes just three high level routing
mechanisms (see Section 4.2.2). The grammar just chooses between them. This
grammar, given the start symbol <Defense> is:

<Defense> ::= shortest_path_protocol
| flooding_protocol
| chord_protocol

4 Experiments
We conduct experiments using the RIVALS network simulator to demonstrate
the combination of GE and coevolution for network related cybersecurity. The
network simulator for our peer-to-peer network allows us to define three increas-
ingly complex topologies and address two different problems for each of them.
Each of these six combinations is what we call a scenario.

These experiments provide insights into how the algorithms perform as well
as how they can scale over the different topologies. We present our experimental
setup in Section 4.1 and scenarios in Section 4.2.

4.1 Experimental Setup
We experiment with a suite of 5 coevolutionary algorithms all with the same
modular GE capability. They are presented in Table 1 and described in Sec-
tion 3.3. Each experiment is one algorithm run 30 times (each time from differ-
ent random initial conditions). Parameter settings for each run are presented in
Table 2. Population and archive sizes reflect the search space size and time cost
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Tab. 2: Coevolutionary algorithm settings for the problems. Coevolutionary
algorithms specific settings are in brackets.

Parameter Setting Value Description
Population size 40(10 Topo 2) number of individuals in each population
Archive size 20 max archive size (MaxSolve)
Generations 20 number of times populations are evalu-

ated
Max length 20 max length of individual integer string
Parent archive probability 0.9 probability of choosing parent from

archive (MaxSolve)
Crossover probability 0.8 probability of combining two individual

integer strings
Mutation probability 0.1 probability of integer change in individ-

ual

of running the network simulator. Other parameters are standard. We present
results that are averaged over the 30 runs.

We perform our tests on an Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz
processor with 24 cores with 96GB of RAM. Tests are performed serially for
greater accuracy and to eliminate any possible interference between tests. We
report the execution time and the fitness of the best defender at the last gener-
ation as the final performance.

4.2 Scenarios
Each network simulation or “run” explores one of 6 scenarios. A scenario is
defined by a network topology and a problem. A problem is defined by objectives
for the defender and attacker, their behaviors, which are expressed by grammars,
and their fitness functions.

4.2.1 Network Topologies

The experimental topologies range in size and complexity. In order to keep the
network simulation simple, we assume that every edge is unit-length.

Topology 0 We start with a simple topology, see Figure 5a, that functions as
a benchmark allowing us to explore simple mission scenarios exhaustively
before scaling up to larger and more realistic topologies.

Topology 1 See Figure 6. This topology has 25 nodes, arranged in 4 subnets
with 4 nodes conceptually functioning as fully connected subnet routers.
All 25 nodes are mapped to the logical peer-to-peer ring. Topologies 1
and 2 are assumed to be too large to conveniently enumerate all the com-
binations of attacks and defenses.

Topology 2 See Figure 7. This topology has 36 nodes modeling subnet routers
placed across the continental USA. All 36 nodes are mapped to the logical
peer-to-peer ring with an assumption that they serve sub nets that are
not on the ring.
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Fig. 6: Topology 1, larger network providing more nodes and a different topol-
ogy

4.2.2 Problems

Each scenario solves one of two problems.

1. Mobile Asset Placement This problem deals with the placement of net-
work assets to serve tasks that support a mission. Optimal placement
of the assets will minimize connectivity loss in an encounter with an at-
tack. See Section 3.4.1 for the grammars and further details. The current
version of the problem has 6 tasks. Each task uses two assets.

Attacker Fitness Function

fMAP
a = n failed

n tasks
− C

n attacks

n tasks

n tasks is the total number of tasks, n failed is defined as how
many tasks the attacker was able to disrupt, and n attacks is the
number of attacks the attacker used, C = 1/1000. This incentivizes
attackers to disrupt tasks but with as few attacks as possible.

Defender Fitness Function

fMAP
d = n successful

n tasks
− n same nodes− n duplicate tasks

n tasks is the same as before, n successful is defined as the total
successful tasks, n same nodes is the number of tasks such that the
start and end node are the same (path to self), n duplicate tasks
is the number of duplicated tasks. This incentivizes defenders to
succeed at as many tasks as possible while penalizing approaches
that use trivial tasks (same start and end node) or duplicate tasks.

2. Network Routing This problem defines a mission as the completion of
tasks that successfully send a message between source and destination
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Fig. 7: Topology 2, possible network for a more realistic mission.

nodes within a specified time interval. Tasks represent different elements
of a mission, e.g. coordination via chat between two users, using Internet
Relay Chat (IRC), or transfer of a file using File Transfer Protocol (FTP)
from one user to a server. A mission is successful if every task is completed
one after the other in the time allowed per task. It is unsuccessful if any
of the tasks of the mission fail. Currently, missions are limited to one task
to allow us to reason about the results obtained. See Section 3.4.2 for the
grammars.
Network Routing can be solved with either a “logical” or “logical and
physical” network simulation. This does not change the fitness function of
the defender but it does change that of the attacker. We first describe the
defender’s routing protocol choices and fitness function. Then we describe
the attacker’s fitness function assuming a “logical” network simulation
where all hops occur just on the logical ring network. We then explain the
difference between the two types of simulations and consequently provide
the attacker’s fitness function for the “logical and physical” simulations.

Defender Routing Protocols The defender chooses among 3 different
routing protocols that use shortest path, flooding or Chord’s finger
tables.
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Shortest path protocol: At the beginning of a task, the network
calculates the shortest path from a start node to an end node,
and attempts to send the packet along this path. If at any point
along the way the path becomes blocked due to node failure
caused by an attacker, the network waits for the blocked node to
become free before continuing. This protocol is more expensive
in terms of time when a network is under attack. It is also more
vulnerable to single nodes being attacked.

Flooding protocol: The flooding protocol works by sending multi-
ple copies of the packet along all available paths and completes
the task when the first packet reaches its destination through
any of these paths. This is more expensive in hops but could be
cheaper in time when under an attack.

Chord protocol: Chord chooses paths using its finger tables. Even
under attack, its routing persists due to its stabilization when a
node is lost or returns to service (see 3.1).

Defender Fitness Function We reward defenders that complete the
mission quickly and with few hops and punish those that take longer
and use more hops. For example, the flooding routing mechanism
gives a better guarantee that the mission will be completed than the
shortest path protocol, but floods the network and thus uses many
hops around the network to do so. This behavior is taken into ac-
count into the fitness function and punished. The fitness function for
the defender is

fL
d = mission success

overall time · n hops

where overall time is the total time a specific routing protocol took
to complete the mission and n hops is total number of hops taken
by the protocol to complete the mission.

Attacker Fitness Function on Logical Network: We reward attack-
ers for being able to disrupt a mission by attacking very few nodes for
a short amount of time and punish attackers as the number of nodes
and for how long they attack them increases. The fitness function
for the attacker is

fL
a = 1−mission success

(n attacks · total duration) + n attacks

where mission success describes whether the entire mission suc-
ceeded(1) or failed(0), n attacks is the total number of nodes at-
tacked in the network, and total duration is the aggregated amount
of time nodes were attacked. We include an additional n attacks
term in the denominator so as to prefer solutions with least amount
of attacks.

Attacker Fitness Function on Logical to Physical Network: This
type of simulation is only relevant to routing with the Chord proto-
col. If a node finds cannot make a hop to another node in the ring,
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it scans its finger table to find the node produces the largest hop and
is available. How we reward attackers changes because both logical
nodes and physical nodes are available for attack. Given a definition
that n nodes = n physical + n logical, the new fitness function for
attackers is:

fP L
a =

1 − mission success

n nodes + (2 · n physical · p duration) + (n logical · l duration)

In this equation, mission success still represents whether the mis-
sion succeeded (1) or failed (0), n physical describes the number
of attacks launched on nodes in the physical layer, n logical repre-
sents the number of attacks launched on nodes in the virtual layer,
p duration represents the total aggregated time nodes in the physi-
cal layer were under attack, and p logical represents the total aggre-
gated time nodes in the logical layer were under attack. This fitness
function penalizes attacks launched on the physical layer more heav-
ily because taking out a node in the physical layer can require more
effort than taking out the corresponding node in the virtual layer.

5 Results
Our first question compares the algorithms. In terms of the performance (best
defender fitness) and execution time of the different ones, is the rIPCA algorithm
an improvement upon them? Since it builds upon IPCA by using the same
archive maintenance strategy for the solutions as IPCA uses for the tests, can it
evolve better solutions? Or, because the monotonic progress guarantee of IPCA’s
archive is displaced by the second archive, will rIPCA evolve comparable or worse
solutions? IPCA’s archive keeps every solution (to guarantee monotonic fitness
trajectory). Can the cost of monotonic progress be simultaneously lowered
without significant loss of performance?

Our second question is specific to the network routing problem. In terms
of the algorithms’ performance, would each of them be able to consistently and
correctly identify the Chord protocol implementation as the network defense
mechanism that is best able to handle network attacks?

5.0.1 Mobile Asset Placement

We collected timing and performance results for the mobile asset placement
problem. In Table 3 we show the averaged results over 30 runs for each topology
and algorithm. We see that rIPCA has high variance and that IPCA and rIPCA
both yield high performance with rIPCA’s being slightly lower. We observe that
IPCA has a significantly longest execution time in all topologies, however as the
network size grows performance becomes more similar.
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Tab. 3: Mobile asset placement execution time and final defender fitness (aver-
aged over 30 runs).

Topology 0
Algorithm Exec Time(s) Final Perf.
Coev 10.616± 0.444 0.132± 0.042
MinMax 8.603± 1.511 0.017± 0.050
MaxSolve 11.256± 0.507 0.282± 0.067
IPCA 24.661± 1.855 0.461± 0.069
rIPCA 8.079± 0.967 0.333± 0.166

Topology 1
Algorithm Exec Time(s) Final Perf.
Coev 6.092± 1.249 0.380± 0.154
MinMax 4.213± 0.369 0.267± 0.200
MaxSolve 8.327± 0.429 0.267± 0.200
IPCA 12.990± 1.563 0.805± 0.063
rIPCA 5.932± 0.950 0.695± 0.259

Topology 2
Algorithm Exec Time(s) Final Perf.
Coev 1.784± 0.328 0.182± 0.074
MinMax 1.482± 0.157 0.150± 0.094
MaxSolve 2.280± 0.127 0.184± 0.069
IPCA 4.188± 0.276 0.338± 0.074
rIPCA 2.245± 0.394 0.276± 0.132

Next, in Figure 8, we show how each algorithm progresses over time on
Topology 0. IPCA’s trajectory shows its expected monotonic increasing per-
formance and also has the highest average final performance. rIPCA, while not
the best algorithm, is second in average final performance while consistently
performing better in execution time (refer to Table 3).

5.0.2 Network Routing: Logical Simulation

Prior to running the experiments with the network routing problem, we ex-
haustively searched Topology 0 (Figure 5a) for a solution. To do this, we set
attacks to last the full duration of a task. We saw that Chord only fails if all
the nodes are blocked. Shortest path fails if any node on the shortest path is
blocked. Flooding fails if a start node is blocked, or an end node is blocked, or
when all paths include a node that is blocked. This information provided us
with a baseline of comparison outside the algorithms and it allowed us to verify
algorithm correctness. It also points out that exhaustive search is possible in
topologies with a small number of nodes and becomes increasingly difficult for
a topology as large as the ones in Figures 6 and 7.

We run the network routing mission simulation over 30 runs and then col-
lect the average over the results. In Table 4 we show the average and standard
deviation of both the wall-clock execution times as well as of the best fitness
values per generation. We first consider Topology 0. The algorithms show
different results, with IPCA and rIPCA showing superior average final perfor-
mance. We conjecture this is due to the test archives for both IPCA and rIPCA
as these archives help enforce monotonic performance increases. When looking
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Fig. 8: Best fitness value average (over 30 runs) per generation for 20 generations
on the mobile asset placement problem. Algorithms compared: IPCA, rIPCA,
Coev, MinMax, MaxSolve.
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Tab. 4: Network routing execution time and final defender fitness on logical
topology (averaged over 30 runs).

Topology 0
Algorithm Exec Time(s) Final Perf.
Coev 10.417± 1.650 0.091± 0.014
MinMax 9.802± 1.693 0.045± 0.028
MaxSolve 20.945± 1.336 0.088± 0.022
IPCA 66.576± 6.537 0.097± 0.021
rIPCA 47.754± 8.108 0.128± 0.055

Topology 1
Algorithm Exec Time(s) Final Perf.
Coev 36.911± 13.290 0.008± 0.001
MinMax 34.745± 10.351 0.005± 0.002
MaxSolve 12.322± 19.236 0.007± 0.001
IPCA 266.382± 59.253 0.008± 0.000
rIPCA 267.784± 69.347 0.008± 0.000

Topology 2
Algorithm Exec Time(s) Final Perf.
Coev 180.114± 80.664 0.005± 0.000
MinMax 158.955± 72.101 0.004± 0.001
MaxSolve 768.817± 342.642 0.005± 0.001
IPCA 1729.165± 623.941 0.005± 0.000
rIPCA 1566.194± 643.867 0.005± 0.000

at Topologies 1 and 2, we do not see much difference between the algorithms.
This is due to the fact that the topologies are much larger in this case and the
defenses are not as versatile. However, rIPCA is on par or better than IPCA in
terms of execution time.

In Figure 9, we examine the average fitness values for both attack and defense
populations from one Coev run over Topology 0. In the attacker’s average fitness
plot, the average fitness for the attack population experiences a short increase in
performance then quickly drops to 0. It then oscillates as the defense population
converges on Chord. The variation in the algorithm allows non-optimal (i.e.
non-chord) solutions to form part of the defense population. This, in turn,
increases the average fitness of attacks as they face defenses which they can
succeed against.

The network routing mission experiments show that IPCA and rIPCA per-
form better but are better suited at handling tasks where execution time isn’t
as important. We also show through our implementation of these coevolution-
ary algorithms that it is possible to model adversarial behavior on a network
simulator. As expected, coevolution does not yield as strong defenders as for a
fixed attack [9].

5.0.3 Network Routing – Physical and Logical Simulation

In these experiments, see Table 5, the trends in the defender fitness values
across the topologies and algorithms closely resemble the trends we noted in
Table 4. The difference, however, upon inspecting the outputs of the algorithms,
is that rather than algorithms converging to the Chord protocol as the best
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Fig. 9: Results from a Coev run for network routing on logical topology on
network topology 0. Top: Median and best fitness results for attacker population
over 20 generations. Bottom: Median and best fitness results for defender
population over 20 generations.
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Tab. 5: Final defender fitness on each topology with physical and logical simu-
lation (averaged over 30 runs).

Topology 0 Topology 1 Topology 2
Algorithm Final Perf. Final Perf. Final Perf.
Coev 0.079± 0.010 0.007± 0.001 0.005± 0.000
MinMax 0.053± 0.023 0.004± 0.001 0.004± 0.001
MaxSolve 0.061± 0.018 0.006± 0.001 0.002± 0.001
IPCA 0.082± 0.009 0.007± 0.000 0.005± 0.001
rIPCA 0.095± 0.027 0.008± 0.001 0.005± 0.001

solution for the defender, it varied in Topology 0 and Topology 1 between the
Chord protocol and the flooding protocol. In the largest topology, the flooding
protocol was always found by all of the algorithms as the best defender. Given
these results, it is possible to recognize that increasing the complexity of the
simulator to traverse the physical network between two nodes for every hop
between the corresponding nodes in the virtual layer increased the number of
hops the Chord protocol took to get the message to the destination. We also
observed that the shortest path never evolved as a final solution. This indicated
that the Chord protocol and the flooding protocol are more robust in terms of
withstanding attackers.

6 Conclusions and Future Work
We have shown how to combine Grammatical Evolution and competitive coevo-
lution so that it is possible to investigate adversarial problems and cyber arms
races. In particular, we focused on network defenses and DDOS attacks. We
grounded our work by considering peer to peer networks, specifically the Chord
protocol, and node loss. Grammars were convenient for representing the search
space of defender and attacker actions and we have embedded a GE module
in each of our coevolutionary algorithms. When we use our system to solve
different problems, we only have to change the BNF grammar, the interpreter
and the fitness function for each problem, rather than change the genotype rep-
resentation. This modularity of GE and the reusability of the GE parser and
rewriter are efficient software engineering and problem solving advantages. The
grammar further helps us communicate with application domain stakeholders
and increases their confidence in solutions and our system.

We have made progress in creating an end-to-end system where we have
shown the ability to test the effectiveness of the different coevolutionary algo-
rithms on simulated networks. We plan to continue this work and have ambitious
goals laid out for future versions of RIVALS. In particular, we are interested in
defending against low intensity DDOS attacks[15]. Attacks like these are hard
to detect because they can be sent in small waves and thus are not easy to spot
amongst regular traffic patterns. One element of future work is to extend the
Chord protocol. Others include: experimenting with more scenarios, generat-
ing more complex missions, e.g. with different numbers of tasks and creating
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a compendium approach to pooling attacks and defenses from multiple runs to
more explicitly choose an overall most robust defense. Finally, we will con-
tinue to improve the grammars, performance and speed of the coevolutionary
algorithms.
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