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Abstract 

Grammatical Evolution (GE) is an evolutionary algorithm that is gaining popularity due to 

its ability to solve problems where it would be impossible to explore every solution within a 

realistic time. Structured Grammatical Evolution (SGE) was developed to overcome some of the 

shortcomings of GE, such as locality issues as well as wrapping around the genotype to 

complete the phenotype2. In this paper, we apply SGE to program synthesis, where the 

computer must generate code to solve algorithmic problems. SGE was improved upon, because 

the current definition of SGE2 does not work. Given that the solution space is very large for 

possible codes, we aim to improve the efficiency of GE in converging to the correct solution. We 

present a method in which to remove cycles from a grammar for SGE, to be able to make sure 

that a genotype matches to a phenotype with reusing parts of the genotype, and analyze results 

to shed insight on future improvements.  
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1. Introduction 

Coders have used code to automate many different industries, but the development of 

program synthesis has yet to show as impactful applications. In this paper, we refer to the 

problem of program synthesis as receiving an algorithmic problem in terms of inputs and 

outputs, and then writing the code to be able to transform those inputs into outputs. Currently, 

these algorithm problems are of beginner level, usually found in students' first course in 

computer science. For context, a problem that we will be examining later in the paper is whether 

the code can print True if two lists are the reverse of each other. The main reason for the lack of 

success in this field is the sheer difficulty of the problem. The problems prove too complex for 

modern A.I. to understand and building code is just as if not even more complex. Also, the 

enormous number of possible combinations of lines of code makes it impossible to optimize 

search over the solution space in reasonable time. Thus, program synthesis is well suited for 

using unsupervised genetic methods to solve. Genetic algorithms generate genotypes (lists of 

integers) that can be translated into phenotypes (lines of code). We can take the best 

performing genotypes and merge them together randomly to get better solutions in the next 

generation, similar to evolution. The algorithm does not need to cognitively understand what the 

problem is, or what the lines of code mean, but knows how well its current solutions perform, 

and that combining solutions lead to better performance over time. How the genetic algorithm 

evolves its solution to the correct answer may provide interesting ideas on how to solve program 

synthesis for the future. At the moment, the benchmark for genetic algorithms solving common 

introductory algorithms is not very high, and definitely not usable in real world solutions4. Only 4 
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out of 29 problems were solved consistently4, and had difficulty in simple problems, such as 

printing a sequence of numbers.  

The genetic approach we are using is grammatical evolution (GE). Computer languages 

can easily be translated into grammars, as they follow relatively strict rules to spoken 

languages. Grammars provide a strong framework for the evolutionary algorithm to translate 

genotypes to phenotypes, as well as to design the structure of those genotypes. Researchers 

improved upon GE and came out with Structured Grammatical Evolution (SGE)2.The goal of 

SGE was to decrease the random variance of GE by increasing the structure of the genotypes, 

so that the recombination and translation of genotypes was more stable. SGE performed better 

than GE on various algorithms, and in this paper we look at whether SGE can perform better in 

program synthesis.  
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2. Research Question 

The goal of this thesis is to improve the success rate of program synthesis using genetic 

algorithms. We aim to use SGE to make improvements upon GE specifically for program 

synthesis. Because SGE on its own does not work with program synthesis, we make changes 

and improvements on SGE to solve our problem. The results from SGE are analyzed to 

discover more ways to improve program synthesis.  
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3. Background 

3.a. Genetic Algorithms 

 

       Figure 1. Genetic algorithm flowchart 

Genetic algorithms solve problems by generating a set of initial solutions that can be 

thought of as gene pools and then repeatedly improving upon those solutions in iterations. The 

problem is required to have a method to measure the performance of the solution. This way, top 

performing solutions, or genomes, can be combined to create the next set of solutions. Each 

solution is represented by a list of bits that functions similarly to DNA in that it can be translated 

to a list of genotypes. The genotypes can then be translated into phenotypes which represent 

the solution. The genotypes of two solutions can be combined into a child solution by using 
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genetic techniques such as crossover, which takes the parts of two different solutions to make a 

child solution. In order for different solutions to appear, random parts of solutions can be 

assigned random numbers, which functions similarly to mutations in DNA. The new solutions 

form a new population, and the process gets repeated. Figure 1 shows that the cycle increases 

fitness with each generation. Evolutionary computation can solve a wide variety of problems, as 

it only needs a way to measure fitness to be able to produce better solutions. However, the 

solutions are typically less optimal than a solution specifically tailored to each problem. Thus, 

the evolutionary algorithm's ability to adapt to different problems can be used to an advantage in 

solving open ended problems where there does not exist an exact solution. 

 

3.b. Grammatical Evolution 

Grammatical evolution (GE) uses a context free grammar to construct a list of integers 

that can be translated into genotypes and phenotypes. The phenotypes represent the solution to 

the problem.Here, we have a grammar that represents a string (of characters). The values on 

the left are nonterminals, which can be decomposed into the pieces on the right. On the right, 

we have different options, called productions, separated by "|". This example is recursive, so a 

string can either be a letter, or a letter followed by a string, which allows us to form any string 

from the grammar. We take the modulo of integers in the genotype to decide which production 

is chosen. 
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     Figure 2. Grammar example of english words 

For example, in the grammar above, we can have a genotype of 1,0,3,4,1,0,1. We start 

with <string>, which has 2 productions. 1 = 1 (mod 2), so our string becomes <letter><string>. 

The genotype gets translated into a phenotype from left to right. The leftmost nonterminal is 

<letter>, and taking the next number 0, it becomes <vowel><string>. Continuing this pattern, we 

will get 'i'<string> => 'i'<consonant> => 'i''b'. 

The top performing genotypes of a population will be chosen through tournament selection to 

mate to produce the next population. In tournament selection, we set a tournament size and 

probability. For each of the two parents of each child, we select the tournament size number of 

genomes from the population randomly. We then order the genomes in terms of fitness, and 

then iterate through the list, picking next genome with the tournament probability. Tournament 

selection aims to select the better performing genomes to create the new child generation, but 

also on occasion choose low performing genomes. The purpose of this is to prevent the 

decrease of diversity among the genomes. If we do not implement this, then later populations 

start looking like just slight variations of the top performing genome, and severely limits the 

possible solutions that GE and SGE can create. The theory is that by combining the high fitness 

genotypes, we may find higher fitness offspring. Two parents are selected and produce 

offspring through recombination and crossover, which is shown in figure 3. 
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   Figure 3. Example of recombination between two genotypes 

Genetic algorithms also use mutations as the force to bring new traits and solutions to a 

problem. Each gene has a small chance of becoming a different random number. Changes that 

result in higher fitness will be propagated through the population through survival. 

The advantage of creating the solution based on a grammar is that the solution has a 

structure1. As long as the grammar is correct, solutions from GE will always be valid solutions, 

while other evolutionary algorithms could evolve invalid solutions. Furthermore, the evolution 

process or even the solution can be modified by people by modifying the language1. Usually, 

evolutionary solutions are too complex and nonstandard for humans to understand. Modifying 

the structure of the grammar instead of the actual solution makes it less of a "black box" and 
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allows a human to make modifications to better fit the problem. With these advantages come 

disadvantages as well. GE algorithms suffer from having a low locality. A low locality means that 

a change to the list of integers generally results in a larger change in phenotypes. This is 

because integers may by modified so that different productions are chosen, changing the 

structure of the solution and nullifying other purposefully selected numbers. In the figures below 

I demonstrate an example of bad locality using this grammar: 

 
      Figure 4. Poor locality grammar example 

 
Suppose we have the following two sequences. 
 

 first expansion second 
expansion 

third expansion fourth expansion 

sequence1 1 2 1 2 

production chosen <line>/<line> y <var> x3 

phenotype <line>/<line> y/<line> y/<var> y/x3 

 

 first expansion second 
expansion 

third expansion fourth expansion 

sequence2 1 0 1 2 

production chosen <line>/<line> <var> x2 y 

phenotype <line>/<line> <var>/<line> x2/<var> x2/y 
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The sequences only differ by one number. However, the change from 2 to 0 causes the terminal 

y to become a nonterminal <var>, so the last two numbers "1" and "2", are used for different 

nonterminals. 

In exaggeration, a high locality algorithm will gradually modify the solutions and slowly 

increase fitness, while a low locality algorithm will make large changes in solutions, relying on 

luck that a large deviation would result in a better solution. GE algorithms have low locality 

because changing the length of the representation or of genotypes may cause the entire 

structure to change. 

3.c. Structured Grammatical Evolution 

Structured grammatical evolution (SGE) aims to reduce locality by enforcing more 

constraints on the grammar as well as the crossover of two lists of genotypes to ensure that the 

modification of one phenotype does not modify the others2,3. As we saw in the example 

grammar above, the nonterminals expand into other nonterminals until they finally become 

terminals. We count the number of total possible expansions possible for each terminal by using 

a recursive algorithm. Instead of storing the genome as a list of integers, SGE uses separate 

lists of integers for each nonterminal. This should theoretically improve locality because 

changing one list will not change values of another list to be used for a different nonterminal. 

A recursive grammar, like the string grammar, is where a nonterminal is both on the left 

hand side and on the right hand side. For structured evolution, because we count the number of 

expansions, we must limit the levels of recursion. We can do this by renaming the variables, 

such as "<var_lvl_1>", "<var_lvl_2>", to remove the recursion. The last level of the recursion 

must include all combinations of productions that do not contain any recursion, where the 

recursive nonterminals are replaced with other non-recursive productions. Limiting how deep 
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recursion also further stabilizes the structure, unlike GE where lists may generate long results or 

short results. 

To do recombination, the paper by Lourenco uses a method where for each genotype, 

one parent is randomly chosen for the child to inherit that genotype. The genotype is a list of 

numbers, where each number represents the choice of an option from a production. We call this 

method binary mask2, as a random binary string is produced to determine from which parent 

each gene is selected. This is different from GE, which uses a point crossover. Rather than 

exchanging parts of the entire genotype, only the expansions for a nonterminal are exchanged. 

For mutation, each genotype has a probability of being mutated by selecting one value from the 

genotype list and changing it with a new random number. 

3.d. SGE for Program Synthesis 

In the benchmark for 29 problems, there is a defined structure to the problems. Each 

problem has a list of training inputs and outputs, used to train the GE. Each problem also has a 

list of outputs used for testing. The benchmark includes the grammar, as well as that will test 

GE's code and measure the fitness, which is usually some sort of distance between GE's output 

and the correct answer. Note that we will not be examining the code created by GE as part of 

the fitness. The grammars are fully fleshed out to be able to express as many different 

programs as possible. This makes the search space very large, which further tests how 

effectively GE and SGE can converge on the correct functions to use. On top of this, the 

problems range across a variety of different programming techniques. Some of the problems 

used in the benchmark are described here4: 

1. Checksum: Given a string, convert each character in the string into its integer  
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ASCII value, sum them, take the sum modulo 64, add the integer value of the space 

character, and then convert that integer back into its corresponding character (the 

checksum character). The program must print Check sum is X, where X is replaced by 

the correct checksum character.  

2. Number IO: Given an integer and a float, print their sum 

3. Median: Given 3 integers, print their median. 

4. Mirror Image: Given two vectors of integers, return true if one vector is the reverse of 

the other, and false otherwise.  

5. Negative to Zero: Given a vector of integers, return the vector where all negative 

integers have been replaced by 0.  

Small Or Large: Given an integer n, print “small” if n < 1000 and “large” if n ≥ 2000 (and 

nothing if 1000 ≤ n < 2000). 

6. String Length Backwards: Given a vector of strings, print the length of each string in 

the vector starting with the last and ending with the first.  

7. Syllables: Given a string containing symbols, spaces, digits, and lowercase letters, 

count the number of occurrences of vowels (a, e, i, o, u, y) in the string and print that 

number as X in The number of syllables is X.  

8. Last Index of Zero: Given a vector of integers, at least one of which is 0, return the 

index of the last occurrence of 0 in the vector.  

9. Vector Average: Given a vector of floats, return the average of those floats. Results 

are rounded to 4 decimal places.4 

 

One difficulty is that some of the problems do not provide a gradual improvement of 

fitness. For example, for the problem Small or Large, where the program must distinguish 
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whether one integer is less than, equal to, or greater than another integer, the fitness will make 

3 jumps, one jump for each comparison. Thus, the program is looking for an exact solutions, 

and does not benefit from genetic evolution's advantage of gradually being able to discern which 

combinations of nonterminals relate to greater fitness.  

The goal of applying SGE to program synthesis is twofold. The first goal is to reduce 

locality to try to improve convergence time. Because code has a clear structure, and a change 

of any nonterminal will drastically change the code's calculations. Think of trying to change a 

loop to a while, or a variable to some other variable. GE may perform recombination and 

mutations that seem much more random than guided by analysis. SGE should be able to 

preserve much more functionality than GE, as recombination may be seen as moving chunks of 

code without distorting its functionality. The second goal of SGE is to remove the case when GE 

does not complete its phenotype expression with the limited amount of genotypes it has. There 

are two options for GE, either wrap around the genotypes so after using the last one, we start 

using the genotypes from the beginning again, or to just end the sequence before finishing the 

expression. Both options appear flawed. By wrapping around, a genotype may be responsible 

for expression multiple phenotypes, and is highly subject to the variance being more random 

than structured. With the other option, choosing to stop the code and just inserting blanks for the 

rest of the program is very likely to result in code that ends abruptly with an error. This just 

creates useless code that GE will not be using in future generations, and decreases the 

diversity of each generation. Because SGE has a structure where we can set the maximum 

amount of recursion, SGE can much more reliably get a solution that without code errors.  
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4. Methods 

SGE had only dealt with recursion when the nonterminal on the left hand side also 

appeared on the right hand side. However, in program synthesis, there will be much deeper 

cycles because of loops, ifs, arithmetic, etc. Thus, we devised a solution to prevent cycles from 

happening. Cycles cause the phenotype to never finish like GE, and will result in code that will 

run into an error and not finish running. Initially, we first go through the grammar tree to discover 

all the cycles and keep note of which nonterminals are in the cycle. 

We then need to find the productions in each right hand side that can terminate in a 

cycle. The grammar can only terminate if all the nonterminals become terminals. Thus, we can 

do depth first search through the grammar tree to find out which paths from the start symbol 

lead to only nonterminals. Any production that contains a nonterminal that does not have any 

productions that terminate is considered as part of a cycle. This method is shown in Figure 5. 
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    Figure 5. Determining cyclical and noncyclical productions pseudocode 

 
After finding the productions that would not terminate if they were expanded in the last 

level, we remove them from the grammar. For the very last level of recursion in our tree, we 

remove all the productions that have nonterminals that do not terminate, and also remove the 

parent productions connected to such productions. Note that we only do this on the last level. 

Thus, this algorithm is not perfect, as a perfect algorithm would measure every single production 

of the last level. However, we believe these two methods of removing the grammar of cycles 

should remove a significant number of cycles, and thus have lower error rates and gene 

diversity than GE. The pseudocode is shown in Figure 6.  
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          Figure 6. Pseudocode for converting a grammar with cycles into  
          noncyclical grammar 

 
Because any nonterminal may be in a cycle with any other terminal, we also changed 

the level structure from how it was done in SGE2. Instead of having a variable go to the next 

level if it calls itself, in the program synthesis case,  the variables in the production of a 

nonterminal that are in any cycle must be one level higher than the left hand side non terminal. 

This prevents cycles from happening. Thus, the recursion level limit represents the actual 

number of nonterminal expansions in the grammar. Because of this, the recursion limit must be 

carefully set for each problem, because different grammars may require a different length of 

expansion to terminate.  
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5. Experiment 

SGE was written in Python 3, and the experiments were run on CSAIL’s Openstack 

servers. The benchmark grammars, fitness and execution codes, and train and test cases were 

copied from the General Program Synthesis Suite. We only selected 10 out of the 29 problems 

because of a time constraint. We specifically chose the problems where GE solved the problem 

at least once to be able to compare efficiency.  

In SGE, we use the same parameters as the Benchmark Program Synthesis Suite, with 

a population size of 1000, tournament size of 7 with probability 0.74. The mutation chance is 

0.15, so for every generated child, each of its genotypes has a 0.15 chance to change. The top 

3 of each generation will always be carried on to the next generation, and the other 997 

genotypes are generated by combining parents of the previous generation. The maximum 

recursion level was set to 8, so each nonterminal could be expanded at most 8 times. SGE is 

run for 300 iterations, and recorded for at which iteration it achieved the correct solution. For 

each problem, we run SGE 100 times and record the number of times SGE's code solved the 

outputs without any errors. 

Source Code: https://github.mit.edu/ALFA-FlexGP/sge_andrew_zhang 
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6. Results 

 

Problem SGE 
Tournamen

t 

GE 
Tournamen

t 

GE 
Lexicase 

Average SGE 
Generations 

Checksum 0 0 0 - 

NumberIO 100 68 98 8 

Median 2 7 45 173.5 

Mirror Image 100 46 78 67 

Negative to Zero 0 10 45 - 

Small Or Large 1 3 5 282 

String Length 
Backwards 

22 7 66 36.4 

Syllables 4 1 18 245.5 

Last Index of 
Zero 

13 8 21 98 

Vector Average 0 14 16 - 

Figure 7. SGE on program synthesis results table. The first column is the problem from the 
benchmark suite that we are solving. The second to fourth columns describe the successful 
runs out of 100 runs in solving the problem. The fifth column shows the average number of 
generations it took SGE to solve the problem. 
 

For the results, we compare the performance of SGE with tournament selection and GE 

with tournament selection. For reference, we include the data on GE with lexicase selection 

which is a better performing parent selection algorithm. We also include the average number of 

generations it took SGE to solve each specific problem. SGE solved 76 more cases than GE, 

and performed on average 16% better than GE. The problems that SGE did solve, it did so in 

fewer than 100 iterations. 
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For simple problems such as NumberIO and Mirror Image where GE solved a majority of 

the 100 trials, SGE was able to solve it every time, performing better than even GE with lexicase 

selection. Unfortunately, for problems that were solved by GE for less than 5 cases, SGE was 

also not able to solve. The problems Last Index of Zero and String Lengths Backwards, SGE 

was able to perform better. In general, SGE was able to solve problems involving for and while 

loops. But for Median and Small or Large, SGE performed worse than GE. The median problem 

requires finding the median of three numbers, and the Small or Large problem involves printing 

if one of the numbers if greater, equal or less than the other number. These problems use 

multiple layered if commands in their solutions, so SGE still has problems producing solutions 

that are more complex. SGE was still unable to solve problems where the output answer tend to 

be either right or wrong. Changes to the code will tend to not increase fitness for these 

problems, and thus make it difficult SGE to find parts of solutions that it use recombination to 

produce better code. From the results, for using tournament selection, it seems that SGE only 

performs slightly better than GE. 
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       Figure 8: The percent of code for each generation that encounters an error. 

We see from Figure 8 that the code produced by SGE is relatively error free. The error 

rates on average are just 1% of the population. Thus, we are able to remove the need to let the 

genotype wrap around, while maintaining the completion of running the generated code. 

Most of the code that was generated in the process of SGE looked very random and 

unhuman-like. Usually, the code had a large number of extra random letters and functionality. 

Thus, a significant amount of code was useless, but was carried on throughout generations. An 
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example is shown in Figure 9.

 

Figure 9. Example of generated code 

Two examples of solutions to the problem Last Index of Zero are shown (the code must 

print the index of the last zero in a list). Note that the code is different from what a human would 

write. 

  

Figure 10. Example 1 of solution to Last Index of Zero problem. The incorrect tab on the first 

line is the a format byproduct of inserting code. The loop breaks are for breaking infinite loops if 

SGE incorrectly makes one. 
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Figure 11. Example of different solution to Last Index of Zero problem. 

 

The example of solution from String Length Backwards (the code must return a list of the 

string lengths in reverse) is simple and looks more similar to what a human would write. When 

many unnecessary nonterminals and terminals were taken out of the grammar, SGE performed 

with much better success. The fewer possible solutions, the less chance that SGE will generate 

some nonsense code that does not help with increasing fitness. 

 

 Figure 12. Example of solution from String Length Backwards. 
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7. Conclusions and Future Works 

From the results, we only see a slight improvement in performance by SGE. However, 

SGE did manage to effectively remove the use of wrap around in GE while maintaining the 

correctness of the code. While only marginally better, SGE appears to be a better framework to 

approach further improvements than GE, because the added structure reduces unnecessary 

variance in producing solutions. Because GE with lexicase selection performed much better 

than GE with tournament selection, it would be useful in the future to test SGE with lexicase 

selection to get a better understanding of if SGE actually does perform better. It would also be 

interesting to incorporate other forms of selection, such as novelty search.  

Looking at the solutions that SGE has created sheds a lot of insight on how to prove 

program synthesis for grammatical evolution in general. Reducing the terminals and 

nonterminals that are not necessary for the solution would increase performance. Thus, a 

method that could understand what parts of the grammar the solution actually needs would 

increase performance. Novelty search takes a step in the direction of incorporating the 

solution’s code to the fitness. We think it is possible to take other steps, such as monitor 

whether lines of code actually have any effect on the final solution. Another way would be to try 

to limit the number of different nonterminals per line of code. Many lines of code created by 

SGE were performing functions on many different things, and reducing this, or just splitting the 

functions over multiple statements may increase performance. 

Although the increases in performance from SGE are not compelling, this experiment 

raises multiple questions whether SGE can be used to make improvements on program 

synthesis in the future.  
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