
Structured Grammatical Evolution Applied to
 Program Synthesis

by Andrew H. Zhang

Submitted to the

 Department of Electrical Engineering and Computer Science
 in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

Massachusetts Institute of Technology

May 2019

© 2019 Andrew H. Zhang. All rights reserved.

 The author hereby grants to M.I.T. permission to reproduce and to distribute publicly paper and
electronic copies of this thesis document in whole and in part in any medium now known or

hereafter created.

Author: ___
Department of Electrical Engineering and Computer Science
May 20, 2019

Certified by: __
Una-May O’Reilly
Principal Research Scientist, MIT CSAIL
Thesis Supervisor
May 20, 2019

Certified by: ___
Erik Hemberg
Research Scientist, MIT CSAIL
Thesis Co-Supervisor
May 20, 2019

1

Structured Grammatical Evolution Applied to Program Synthesis

By Andrew Zhang

Submitted to the Department of Electrical Engineering and Computer Science

May 28, 2018

In Partial Fulfillment of the Requirements for the Degree of Master of Engineering in Electrical

Engineering and Computer Science

Abstract

Grammatical Evolution (GE) is an evolutionary algorithm that is gaining popularity due to

its ability to solve problems where it would be impossible to explore every solution within a

realistic time. Structured Grammatical Evolution (SGE) was developed to overcome some of the

shortcomings of GE, such as locality issues as well as wrapping around the genotype to

complete the phenotype2. In this paper, we apply SGE to program synthesis, where the

computer must generate code to solve algorithmic problems. SGE was improved upon, because

the current definition of SGE2 does not work. Given that the solution space is very large for

possible codes, we aim to improve the efficiency of GE in converging to the correct solution. We

present a method in which to remove cycles from a grammar for SGE, to be able to make sure

that a genotype matches to a phenotype with reusing parts of the genotype, and analyze results

to shed insight on future improvements.

2

Table Of Contents

1. Introduction ……………………………...……………………………...………… 5

2. Research Question ……………………………...………………………………. 7

3. Background ……………………………...……………………………...………… 8

a. Genetic Algorithms ……………………………...………………………. 8

b. Grammatical Evolution ……………………………...………………….. 9

c. Structured Grammatical Evolution ……………………………...……... 13

d. SGE for Program Synthesis ……………………………...…………….. 14

4. Methods ……………………………...……………………………...…………….. 17

5. Experiments ……………………………...……………………………...………… 20

6. Results ……………………………...……………………………...……………… 21

7. Conclusions and Future Works ……………………………...………………….. 26

3

List of Figures

Figure 1. Genetic algorithm flowchart ………………..……………………..…………………… 8

Figure 2. Grammar example of english words …………………..……………………..………. 10

Figure 3. Example of recombination between two genotypes …………………..……………. 11

Figure 4. Poor locality grammar example …………………..……………………..……………. 12

Figure 5. Determining cyclical and noncyclical productions pseudocode …………………… 18

Figure 6. Pseudocode for converting a grammar with cycles into noncyclical grammar …… 19

Figure 7. SGE on program synthesis results table. …………………..……………………..….. 21

Figure 8: The percent of code for each generation that encounters an error. ……………….. 23

Figure 9. Example of generated code …………………..……………………..……………….... 24

Figure 10. Example 1 of solution to Last Index of Zero problem. …………………..……….... 24

Figure 11. Example of different solution to Last Index of Zero problem. …………………..… 25

Figure 12. Example of solution from String Length Backwards. …………………..………….. 25

4

1. Introduction

Coders have used code to automate many different industries, but the development of

program synthesis has yet to show as impactful applications. In this paper, we refer to the

problem of program synthesis as receiving an algorithmic problem in terms of inputs and

outputs, and then writing the code to be able to transform those inputs into outputs. Currently,

these algorithm problems are of beginner level, usually found in students' first course in

computer science. For context, a problem that we will be examining later in the paper is whether

the code can print True if two lists are the reverse of each other. The main reason for the lack of

success in this field is the sheer difficulty of the problem. The problems prove too complex for

modern A.I. to understand and building code is just as if not even more complex. Also, the

enormous number of possible combinations of lines of code makes it impossible to optimize

search over the solution space in reasonable time. Thus, program synthesis is well suited for

using unsupervised genetic methods to solve. Genetic algorithms generate genotypes (lists of

integers) that can be translated into phenotypes (lines of code). We can take the best

performing genotypes and merge them together randomly to get better solutions in the next

generation, similar to evolution. The algorithm does not need to cognitively understand what the

problem is, or what the lines of code mean, but knows how well its current solutions perform,

and that combining solutions lead to better performance over time. How the genetic algorithm

evolves its solution to the correct answer may provide interesting ideas on how to solve program

synthesis for the future. At the moment, the benchmark for genetic algorithms solving common

introductory algorithms is not very high, and definitely not usable in real world solutions4. Only 4

5

out of 29 problems were solved consistently4, and had difficulty in simple problems, such as

printing a sequence of numbers.

The genetic approach we are using is grammatical evolution (GE). Computer languages

can easily be translated into grammars, as they follow relatively strict rules to spoken

languages. Grammars provide a strong framework for the evolutionary algorithm to translate

genotypes to phenotypes, as well as to design the structure of those genotypes. Researchers

improved upon GE and came out with Structured Grammatical Evolution (SGE)2.The goal of

SGE was to decrease the random variance of GE by increasing the structure of the genotypes,

so that the recombination and translation of genotypes was more stable. SGE performed better

than GE on various algorithms, and in this paper we look at whether SGE can perform better in

program synthesis.

6

2. Research Question

The goal of this thesis is to improve the success rate of program synthesis using genetic

algorithms. We aim to use SGE to make improvements upon GE specifically for program

synthesis. Because SGE on its own does not work with program synthesis, we make changes

and improvements on SGE to solve our problem. The results from SGE are analyzed to

discover more ways to improve program synthesis.

7

3. Background

3.a. Genetic Algorithms

 Figure 1. Genetic algorithm flowchart

Genetic algorithms solve problems by generating a set of initial solutions that can be

thought of as gene pools and then repeatedly improving upon those solutions in iterations. The

problem is required to have a method to measure the performance of the solution. This way, top

performing solutions, or genomes, can be combined to create the next set of solutions. Each

solution is represented by a list of bits that functions similarly to DNA in that it can be translated

to a list of genotypes. The genotypes can then be translated into phenotypes which represent

the solution. The genotypes of two solutions can be combined into a child solution by using

8

genetic techniques such as crossover, which takes the parts of two different solutions to make a

child solution. In order for different solutions to appear, random parts of solutions can be

assigned random numbers, which functions similarly to mutations in DNA. The new solutions

form a new population, and the process gets repeated. Figure 1 shows that the cycle increases

fitness with each generation. Evolutionary computation can solve a wide variety of problems, as

it only needs a way to measure fitness to be able to produce better solutions. However, the

solutions are typically less optimal than a solution specifically tailored to each problem. Thus,

the evolutionary algorithm's ability to adapt to different problems can be used to an advantage in

solving open ended problems where there does not exist an exact solution.

3.b. Grammatical Evolution

Grammatical evolution (GE) uses a context free grammar to construct a list of integers

that can be translated into genotypes and phenotypes. The phenotypes represent the solution to

the problem.Here, we have a grammar that represents a string (of characters). The values on

the left are nonterminals, which can be decomposed into the pieces on the right. On the right,

we have different options, called productions, separated by "|". This example is recursive, so a

string can either be a letter, or a letter followed by a string, which allows us to form any string

from the grammar. We take the modulo of integers in the genotype to decide which production

is chosen.

9

 Figure 2. Grammar example of english words

For example, in the grammar above, we can have a genotype of 1,0,3,4,1,0,1. We start

with <string>, which has 2 productions. 1 = 1 (mod 2), so our string becomes <letter><string>.

The genotype gets translated into a phenotype from left to right. The leftmost nonterminal is

<letter>, and taking the next number 0, it becomes <vowel><string>. Continuing this pattern, we

will get 'i'<string> => 'i'<consonant> => 'i''b'.

The top performing genotypes of a population will be chosen through tournament selection to

mate to produce the next population. In tournament selection, we set a tournament size and

probability. For each of the two parents of each child, we select the tournament size number of

genomes from the population randomly. We then order the genomes in terms of fitness, and

then iterate through the list, picking next genome with the tournament probability. Tournament

selection aims to select the better performing genomes to create the new child generation, but

also on occasion choose low performing genomes. The purpose of this is to prevent the

decrease of diversity among the genomes. If we do not implement this, then later populations

start looking like just slight variations of the top performing genome, and severely limits the

possible solutions that GE and SGE can create. The theory is that by combining the high fitness

genotypes, we may find higher fitness offspring. Two parents are selected and produce

offspring through recombination and crossover, which is shown in figure 3.

10

 Figure 3. Example of recombination between two genotypes

Genetic algorithms also use mutations as the force to bring new traits and solutions to a

problem. Each gene has a small chance of becoming a different random number. Changes that

result in higher fitness will be propagated through the population through survival.

The advantage of creating the solution based on a grammar is that the solution has a

structure1. As long as the grammar is correct, solutions from GE will always be valid solutions,

while other evolutionary algorithms could evolve invalid solutions. Furthermore, the evolution

process or even the solution can be modified by people by modifying the language1. Usually,

evolutionary solutions are too complex and nonstandard for humans to understand. Modifying

the structure of the grammar instead of the actual solution makes it less of a "black box" and

11

allows a human to make modifications to better fit the problem. With these advantages come

disadvantages as well. GE algorithms suffer from having a low locality. A low locality means that

a change to the list of integers generally results in a larger change in phenotypes. This is

because integers may by modified so that different productions are chosen, changing the

structure of the solution and nullifying other purposefully selected numbers. In the figures below

I demonstrate an example of bad locality using this grammar:

 Figure 4. Poor locality grammar example

Suppose we have the following two sequences.

 first expansion second
expansion

third expansion fourth expansion

sequence1 1 2 1 2

production chosen <line>/<line> y <var> x3

phenotype <line>/<line> y/<line> y/<var> y/x3

 first expansion second
expansion

third expansion fourth expansion

sequence2 1 0 1 2

production chosen <line>/<line> <var> x2 y

phenotype <line>/<line> <var>/<line> x2/<var> x2/y

12

The sequences only differ by one number. However, the change from 2 to 0 causes the terminal

y to become a nonterminal <var>, so the last two numbers "1" and "2", are used for different

nonterminals.

In exaggeration, a high locality algorithm will gradually modify the solutions and slowly

increase fitness, while a low locality algorithm will make large changes in solutions, relying on

luck that a large deviation would result in a better solution. GE algorithms have low locality

because changing the length of the representation or of genotypes may cause the entire

structure to change.

3.c. Structured Grammatical Evolution

Structured grammatical evolution (SGE) aims to reduce locality by enforcing more

constraints on the grammar as well as the crossover of two lists of genotypes to ensure that the

modification of one phenotype does not modify the others2,3. As we saw in the example

grammar above, the nonterminals expand into other nonterminals until they finally become

terminals. We count the number of total possible expansions possible for each terminal by using

a recursive algorithm. Instead of storing the genome as a list of integers, SGE uses separate

lists of integers for each nonterminal. This should theoretically improve locality because

changing one list will not change values of another list to be used for a different nonterminal.

A recursive grammar, like the string grammar, is where a nonterminal is both on the left

hand side and on the right hand side. For structured evolution, because we count the number of

expansions, we must limit the levels of recursion. We can do this by renaming the variables,

such as "<var_lvl_1>", "<var_lvl_2>", to remove the recursion. The last level of the recursion

must include all combinations of productions that do not contain any recursion, where the

recursive nonterminals are replaced with other non-recursive productions. Limiting how deep

13

recursion also further stabilizes the structure, unlike GE where lists may generate long results or

short results.

To do recombination, the paper by Lourenco uses a method where for each genotype,

one parent is randomly chosen for the child to inherit that genotype. The genotype is a list of

numbers, where each number represents the choice of an option from a production. We call this

method binary mask2, as a random binary string is produced to determine from which parent

each gene is selected. This is different from GE, which uses a point crossover. Rather than

exchanging parts of the entire genotype, only the expansions for a nonterminal are exchanged.

For mutation, each genotype has a probability of being mutated by selecting one value from the

genotype list and changing it with a new random number.

3.d. SGE for Program Synthesis

In the benchmark for 29 problems, there is a defined structure to the problems. Each

problem has a list of training inputs and outputs, used to train the GE. Each problem also has a

list of outputs used for testing. The benchmark includes the grammar, as well as that will test

GE's code and measure the fitness, which is usually some sort of distance between GE's output

and the correct answer. Note that we will not be examining the code created by GE as part of

the fitness. The grammars are fully fleshed out to be able to express as many different

programs as possible. This makes the search space very large, which further tests how

effectively GE and SGE can converge on the correct functions to use. On top of this, the

problems range across a variety of different programming techniques. Some of the problems

used in the benchmark are described here4:

1. Checksum: Given a string, convert each character in the string into its integer

14

ASCII value, sum them, take the sum modulo 64, add the integer value of the space

character, and then convert that integer back into its corresponding character (the

checksum character). The program must print Check sum is X, where X is replaced by

the correct checksum character.

2. Number IO: Given an integer and a float, print their sum

3. Median: Given 3 integers, print their median.

4. Mirror Image: Given two vectors of integers, return true if one vector is the reverse of

the other, and false otherwise.

5. Negative to Zero: Given a vector of integers, return the vector where all negative

integers have been replaced by 0.

Small Or Large: Given an integer n, print “small” if n < 1000 and “large” if n ≥ 2000 (and

nothing if 1000 ≤ n < 2000).

6. String Length Backwards: Given a vector of strings, print the length of each string in

the vector starting with the last and ending with the first.

7. Syllables: Given a string containing symbols, spaces, digits, and lowercase letters,

count the number of occurrences of vowels (a, e, i, o, u, y) in the string and print that

number as X in The number of syllables is X.

8. Last Index of Zero: Given a vector of integers, at least one of which is 0, return the

index of the last occurrence of 0 in the vector.

9. Vector Average: Given a vector of floats, return the average of those floats. Results

are rounded to 4 decimal places.4

One difficulty is that some of the problems do not provide a gradual improvement of

fitness. For example, for the problem Small or Large, where the program must distinguish

15

whether one integer is less than, equal to, or greater than another integer, the fitness will make

3 jumps, one jump for each comparison. Thus, the program is looking for an exact solutions,

and does not benefit from genetic evolution's advantage of gradually being able to discern which

combinations of nonterminals relate to greater fitness.

The goal of applying SGE to program synthesis is twofold. The first goal is to reduce

locality to try to improve convergence time. Because code has a clear structure, and a change

of any nonterminal will drastically change the code's calculations. Think of trying to change a

loop to a while, or a variable to some other variable. GE may perform recombination and

mutations that seem much more random than guided by analysis. SGE should be able to

preserve much more functionality than GE, as recombination may be seen as moving chunks of

code without distorting its functionality. The second goal of SGE is to remove the case when GE

does not complete its phenotype expression with the limited amount of genotypes it has. There

are two options for GE, either wrap around the genotypes so after using the last one, we start

using the genotypes from the beginning again, or to just end the sequence before finishing the

expression. Both options appear flawed. By wrapping around, a genotype may be responsible

for expression multiple phenotypes, and is highly subject to the variance being more random

than structured. With the other option, choosing to stop the code and just inserting blanks for the

rest of the program is very likely to result in code that ends abruptly with an error. This just

creates useless code that GE will not be using in future generations, and decreases the

diversity of each generation. Because SGE has a structure where we can set the maximum

amount of recursion, SGE can much more reliably get a solution that without code errors.

16

4. Methods

SGE had only dealt with recursion when the nonterminal on the left hand side also

appeared on the right hand side. However, in program synthesis, there will be much deeper

cycles because of loops, ifs, arithmetic, etc. Thus, we devised a solution to prevent cycles from

happening. Cycles cause the phenotype to never finish like GE, and will result in code that will

run into an error and not finish running. Initially, we first go through the grammar tree to discover

all the cycles and keep note of which nonterminals are in the cycle.

We then need to find the productions in each right hand side that can terminate in a

cycle. The grammar can only terminate if all the nonterminals become terminals. Thus, we can

do depth first search through the grammar tree to find out which paths from the start symbol

lead to only nonterminals. Any production that contains a nonterminal that does not have any

productions that terminate is considered as part of a cycle. This method is shown in Figure 5.

17

 Figure 5. Determining cyclical and noncyclical productions pseudocode

After finding the productions that would not terminate if they were expanded in the last

level, we remove them from the grammar. For the very last level of recursion in our tree, we

remove all the productions that have nonterminals that do not terminate, and also remove the

parent productions connected to such productions. Note that we only do this on the last level.

Thus, this algorithm is not perfect, as a perfect algorithm would measure every single production

of the last level. However, we believe these two methods of removing the grammar of cycles

should remove a significant number of cycles, and thus have lower error rates and gene

diversity than GE. The pseudocode is shown in Figure 6.

18

 Figure 6. Pseudocode for converting a grammar with cycles into
 noncyclical grammar

Because any nonterminal may be in a cycle with any other terminal, we also changed

the level structure from how it was done in SGE2. Instead of having a variable go to the next

level if it calls itself, in the program synthesis case, the variables in the production of a

nonterminal that are in any cycle must be one level higher than the left hand side non terminal.

This prevents cycles from happening. Thus, the recursion level limit represents the actual

number of nonterminal expansions in the grammar. Because of this, the recursion limit must be

carefully set for each problem, because different grammars may require a different length of

expansion to terminate.

19

5. Experiment

SGE was written in Python 3, and the experiments were run on CSAIL’s Openstack

servers. The benchmark grammars, fitness and execution codes, and train and test cases were

copied from the General Program Synthesis Suite. We only selected 10 out of the 29 problems

because of a time constraint. We specifically chose the problems where GE solved the problem

at least once to be able to compare efficiency.

In SGE, we use the same parameters as the Benchmark Program Synthesis Suite, with

a population size of 1000, tournament size of 7 with probability 0.74. The mutation chance is

0.15, so for every generated child, each of its genotypes has a 0.15 chance to change. The top

3 of each generation will always be carried on to the next generation, and the other 997

genotypes are generated by combining parents of the previous generation. The maximum

recursion level was set to 8, so each nonterminal could be expanded at most 8 times. SGE is

run for 300 iterations, and recorded for at which iteration it achieved the correct solution. For

each problem, we run SGE 100 times and record the number of times SGE's code solved the

outputs without any errors.

Source Code: https://github.mit.edu/ALFA-FlexGP/sge_andrew_zhang

20

6. Results

Problem SGE
Tournamen

t

GE
Tournamen

t

GE
Lexicase

Average SGE
Generations

Checksum 0 0 0 -

NumberIO 100 68 98 8

Median 2 7 45 173.5

Mirror Image 100 46 78 67

Negative to Zero 0 10 45 -

Small Or Large 1 3 5 282

String Length
Backwards

22 7 66 36.4

Syllables 4 1 18 245.5

Last Index of
Zero

13 8 21 98

Vector Average 0 14 16 -

Figure 7. SGE on program synthesis results table. The first column is the problem from the
benchmark suite that we are solving. The second to fourth columns describe the successful
runs out of 100 runs in solving the problem. The fifth column shows the average number of
generations it took SGE to solve the problem.

For the results, we compare the performance of SGE with tournament selection and GE

with tournament selection. For reference, we include the data on GE with lexicase selection

which is a better performing parent selection algorithm. We also include the average number of

generations it took SGE to solve each specific problem. SGE solved 76 more cases than GE,

and performed on average 16% better than GE. The problems that SGE did solve, it did so in

fewer than 100 iterations.

21

For simple problems such as NumberIO and Mirror Image where GE solved a majority of

the 100 trials, SGE was able to solve it every time, performing better than even GE with lexicase

selection. Unfortunately, for problems that were solved by GE for less than 5 cases, SGE was

also not able to solve. The problems Last Index of Zero and String Lengths Backwards, SGE

was able to perform better. In general, SGE was able to solve problems involving for and while

loops. But for Median and Small or Large, SGE performed worse than GE. The median problem

requires finding the median of three numbers, and the Small or Large problem involves printing

if one of the numbers if greater, equal or less than the other number. These problems use

multiple layered if commands in their solutions, so SGE still has problems producing solutions

that are more complex. SGE was still unable to solve problems where the output answer tend to

be either right or wrong. Changes to the code will tend to not increase fitness for these

problems, and thus make it difficult SGE to find parts of solutions that it use recombination to

produce better code. From the results, for using tournament selection, it seems that SGE only

performs slightly better than GE.

22

 Figure 8: The percent of code for each generation that encounters an error.

We see from Figure 8 that the code produced by SGE is relatively error free. The error

rates on average are just 1% of the population. Thus, we are able to remove the need to let the

genotype wrap around, while maintaining the completion of running the generated code.

Most of the code that was generated in the process of SGE looked very random and

unhuman-like. Usually, the code had a large number of extra random letters and functionality.

Thus, a significant amount of code was useless, but was carried on throughout generations. An

23

example is shown in Figure 9.

Figure 9. Example of generated code

Two examples of solutions to the problem Last Index of Zero are shown (the code must

print the index of the last zero in a list). Note that the code is different from what a human would

write.

Figure 10. Example 1 of solution to Last Index of Zero problem. The incorrect tab on the first

line is the a format byproduct of inserting code. The loop breaks are for breaking infinite loops if

SGE incorrectly makes one.

24

Figure 11. Example of different solution to Last Index of Zero problem.

The example of solution from String Length Backwards (the code must return a list of the

string lengths in reverse) is simple and looks more similar to what a human would write. When

many unnecessary nonterminals and terminals were taken out of the grammar, SGE performed

with much better success. The fewer possible solutions, the less chance that SGE will generate

some nonsense code that does not help with increasing fitness.

 Figure 12. Example of solution from String Length Backwards.

25

7. Conclusions and Future Works

From the results, we only see a slight improvement in performance by SGE. However,

SGE did manage to effectively remove the use of wrap around in GE while maintaining the

correctness of the code. While only marginally better, SGE appears to be a better framework to

approach further improvements than GE, because the added structure reduces unnecessary

variance in producing solutions. Because GE with lexicase selection performed much better

than GE with tournament selection, it would be useful in the future to test SGE with lexicase

selection to get a better understanding of if SGE actually does perform better. It would also be

interesting to incorporate other forms of selection, such as novelty search.

Looking at the solutions that SGE has created sheds a lot of insight on how to prove

program synthesis for grammatical evolution in general. Reducing the terminals and

nonterminals that are not necessary for the solution would increase performance. Thus, a

method that could understand what parts of the grammar the solution actually needs would

increase performance. Novelty search takes a step in the direction of incorporating the

solution’s code to the fitness. We think it is possible to take other steps, such as monitor

whether lines of code actually have any effect on the final solution. Another way would be to try

to limit the number of different nonterminals per line of code. Many lines of code created by

SGE were performing functions on many different things, and reducing this, or just splitting the

functions over multiple statements may increase performance.

Although the increases in performance from SGE are not compelling, this experiment

raises multiple questions whether SGE can be used to make improvements on program

synthesis in the future.

26

Bibliography

1. Painter, Tim. "Grammatical Evolution in Python." . , University of Bath, 2006,

 www.cs.bath.ac.uk/~mdv/courses/CM30082/projects.bho/2005-6/painter-t-dissertation-2

 005-6.pdf.

2. Lourenço N., Pereira F.B., Costa E. (2016) SGE: A Structured Representation for

 Grammatical Evolution. In: Bonnevay S., Legrand P., Monmarché N., Lutton E., Schoenauer

 M. (eds) Artificial Evolution. EA 2015. Lecture Notes in Computer Science, vol 9554. Springer,

 Cham.

3. Eric Medvet, Hierarchical grammatical evolution, Proceedings of the Genetic and

Evolutionary

 Computation Conference Companion, July 15-19, 2017, Berlin, Germany.

4. Helmuth, Thomas. Spector, Lee. "General Program Synthesis Benchmark Suite"., 2015,

GECCO. http://dx.doi.org/10.1145/2739480.2754769

27

