
Adaptive Defense Against Adverserial Artificial

Intelligence at the Edge of the Cloud using

Evolutionary Algorithms

by

Sofiane Djeffal

M.S., Boston University (2011)
B.S., Boston University (2008)

Submitted to the System Design and Management Program
in partial fulfillment of the requirements for the degree of

Master of Science in Engineering and Management

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2020

© Massachusetts Institute of Technology 2020. All rights reserved.

Author .
System Design and Management Program

May 8, 2020

Certified by. .
Una-May O’Reilley

Principal Research Scientist
Thesis Supervisor

Certified by. .
Erik Hemberg

Research Scientist
Thesis Supervisor

Accepted by .
Joan Rubin

Executive Director, System Design and Management Program

THIS PAGE INTENTIONALLY LEFT BLANK

2

Adaptive Defense Against Adverserial Artificial Intelligence

at the Edge of the Cloud using Evolutionary Algorithms

by

Sofiane Djeffal

Submitted to the System Design and Management Program
on May 8, 2020, in partial fulfillment of the

requirements for the degree of
Master of Science in Engineering and Management

Abstract

While moving to the cloud increases flexibility for many organisations around the
world, it also presents its own set of operational risks and complexities when it comes
to keeping data and workflows secure. As data becomes digitized, it is becoming more
fruitful for bad actors to try to engage in data theft or disrupt online services for their
financial gain, corporate espionage, or general intent to disrupt a service. Computers
are also becoming more powerful and sophisticated than ever, allowing them to brute
force what were once considered top of the line cryptographic ciphers and algorithms
in no time. The cost of protecting an infrastructure is increasing both financially
and in terms of human resources needed to support a system’s security. Companies
are relying on the cloud to provide that protection, and one of the ways the cloud
provides it is through Edge nodes that sit in front of their infrastruture. Edge nodes
are the first line of defense against threats to a web application.

This thesis explores a new heuristic for approaching threat generation and detec-
tion in a network. It aims to demonstrate that with a proper grammar definition
along with a strategy, and a reward system, a genetic algorithm can perform bet-
ter than the existing rulebased system used to generate and defend against a wide
breadth of attacks.

This proposes solution focuses on three types of attacks: Data Exfiltration, Server
Hijack, and Denial of Service. The goal is to demonstrate that computationally
searching for vulnerabilities does not scale well with a rule based system while a
genetic algorithm can handle an increase of breadth in attacks with more elegance
and better results.

Thesis Supervisor: Una-May O’Reilley
Title: Principal Research Scientist

Thesis Supervisor: Erik Hemberg
Title: Research Scientist

3

THIS PAGE INTENTIONALLY LEFT BLANK

4

Acknowledgments

First and foremost I would like to thank my parents Mahbouba and Mahieddine for

their unconditional love and support, and for being the best role models a son can

ask for. My little sister Manel, who challenged me in childhood and inpsires me in

adulthood. My girlfriend Manon who has been a pillar of support during the final

stretches of my academic journey with her warm presence that brings joy and light to

my life every single day. My advisors Erik, Una-May and the rest of ALFA research

group for providing invaluable guidance, feedback, and an array of interesting topics

to learn from during our bi-weekly lunches. To my SDM cohort and SDM leadership

for providing me the venue to challenge myself and for exposing me the a unique set

of perspectives I would have never been exposed to outside the program. I hope that

I was able to do the same. To my colleagues at Microsoft whose passion, expertise

and work ethic continue to be an inspiration every day.

5

THIS PAGE INTENTIONALLY LEFT BLANK

6

Contents

1 Introduction 17

1.1 Motivation . 17

1.2 Research Goal . 19

1.2.1 Research Questions . 19

1.2.2 Research Approach . 20

1.3 Thesis Structure . 20

2 Related Work 21

3 Literature Review 23

3.1 Cloud Infrastructure . 23

3.1.1 Web Application Servers . 24

3.1.2 Edge Computing and BGP Networks 27

3.2 The Web Application Firewall . 29

3.3 Grammatical Evolution . 31

3.4 Cyber attacks and Threat model . 32

3.4.1 Threat Model . 32

3.4.2 Advanced Perisitant Threat (ATP) and Cyber Killchain . . . 34

3.4.3 Types of attacks studied in this research 36

4 Case study: Equifax - An HTTP Header Attack 41

4.1 How it happened . 41

4.2 Impact and Cost . 42

7

4.3 Lessons learned . 42

5 Methodology 43

5.1 Attacker-Defender system setup . 43

5.1.1 The Attacker: A client running a grammatical evolution algo-

rithm . 44

5.1.2 The Defender: An application server behind an Edge node run-

ning a Web Application Firewall 48

5.2 Methodology Limitations . 50

5.3 Parameters tested in Grammatical Evolution 51

5.4 Attack selection and Strategy . 52

5.5 Search space . 53

5.6 Measure of fitness . 54

6 Experiments 57

6.1 Proof of Concept . 58

6.2 Denial of Service: Exploiting an expensive operation 59

6.2.1 Random Search . 60

6.2.2 Grammatical Evolution . 60

6.3 Increasing the breadth of attacks and strategies 62

6.3.1 The stealthy attacker strategy 63

6.3.2 The persistant attacker strategy 64

6.4 Rescoping the grammar from HTTP Requests to attack missions . . . 66

6.5 Summary of results . 69

7 Conclusion and future work 71

7.1 Limitations . 71

7.2 Future Work . 72

A Threat Model 73

A.1 Client to Edge Request . 73

A.2 Web API to Database . 75

8

A.3 Edge to Web API Request . 78

A.4 Web API to Database Response . 81

A.5 Client to Edge Response . 84

B Listings 85

9

THIS PAGE INTENTIONALLY LEFT BLANK

10

List of Figures

1-1 The average and standard deviation of critical parameters 18

3-1 Summary of key differences of different application server infrastruc-

tures [1]. 24

3-2 Each subnetwork is called an Autonomous System (AS) and is a large

pool of routers run by a single organization, typically an Internet Ser-

vice Provider [2] . 27

3-3 This Figure shows 6 AS. If AS1 need to go to AS3, It has 2 different

options [2] . 28

3-4 An Edge node sits between the user and the service and provides con-

tent delivery, service acceleration, and protection against various types

of attacks . 29

3-5 A Web application firewall sits between the end user and the applica-

tion server. 29

3-6 Threat model diagram for a simple system of a Web application inter-

face sitting in front of an Edge node. The Web API has access to a

database. 34

3-7 Cyber killchain . 35

3-8 HTTP Smuggling attack diagram . 37

5-1 The attacking client is an HTTP client implemented in python 3. The

defending server is an Azure Function instance sitting in front of an

Edge node. 43

5-2 Concepts described by the grammar 47

11

5-3 Azure Edge WAF policy with protection against a HTTP Request

Smuggling Attack disabled . 50

6-1 Proof of Concept search with a population size of 4 and 10 generartions.

The best solution is a request with “ExpectedOperation”. The fitness

is 8.2 . 59

6-2 The average and standard deviation of critical parameters 60

6-3 The average and standard deviation of critical parameters 63

6-4 The average and standard deviation of critical parameters 67

A-1 Threat Model Diagram . 73

A-2 Theat Model Diagram for client to edge request interaction 74

A-3 Theat Model Diagram for Web API to Database request interaction . 75

A-4 Theat Model Diagram for Edge to Web API request interaction . . . 78

A-5 Theat Model Diagram for Web API to Database response interaction 81

A-6 Theat Model Diagram for Client to Edge response interaction 84

12

List of Tables

5.1 Application Server API . 49

5.2 internal function to emulate a cross script attack through HTTP smug-

gling. 49

5.3 Parameters for each experiment run. 51

5.4 The 3 phases of a killchain. In the exploit phase of the DoS attack,

if the attack did not take down the service but slowed it down, the

algorithm measures the impact of the attack and attempts to double

down on the effort for up to 2 attempts. 53

5.5 Payoff Table. 55

6.1 Experimental Setup. The setup covers the baseline of random search,

the effect of different strategies in GE and the paramater sensitivity of

population and generation sizes. The size of the search space remains

relatively unchanged but the different grammars have different search

restrictions (See Figure 5-2 for Grammar details) 57

6.2 Application Server Action Definition 58

6.3 Actions and Results . 58

6.4 Result Payoff . 58

6.5 Genetic Algorithm with a cautious attack and population size 20, 20

generations 8 iterations to execute strategy - (Figure 6-2) 61

6.6 Summary of results for Denial of Service experiment 61

6.7 Distribution of operations run for an attacker with a persistant strategy

and an application server vulnerable to DoS only. 65

13

6.8 Summaryf of Experiments: Genetic Algorithm with a cautious attack

and population size 20, 40 generations 4 iterations to execute strategy

- (Figure 6-3) . 66

6.9 Mission results for a stealthy strategy. The application is vulnerable

to all attacks - Best Solution (Figure 6-4a) 69

6.10 Mission results for a persistant strategy. The application is vulnerable

to all attacks - Best Solution (Figure 6-4c) 69

6.11 Mission results for a stealthy strategy. The application is vulnerable

to DoS attacks only - Best Solution (Figure 6-4b) 69

6.12 Mission results for a persistant strategy. The application is vulnerable

to DoS attacks only - Best Solution (Figure 6-4d) 69

A.1 An adversary can gain unauthorized access to configure resources. . . 74

A.2 An adversary can deny actions on Cloud Gateway due to lack of auditing. 74

A.3 An adversary may spoof an system administrator and gain access to

the system management portal. 74

A.4 An adversary can gain unauthorized access to database due to lack of

network access protection . 75

A.5 An adversary can gain unauthorized access to database due to loose

authorization rules . 75

A.6 An adversary can gain access to sensitive PII or HBI data in database 76

A.7 An adversary can gain access to sensitive data by performing SQL

injection . 76

A.8 An adversary can deny actions on database due to lack of auditing . . 76

A.9 An adversary can tamper critical database securables and deny the

action . 76

A.10 An adversary may leverage the lack of monitoring systems and trigger

anomalous traffic to database . 77

A.11 An adversary may gain unauthorized access to Web API due to poor

access control checks . 78

14

A.12 An adversary can gain access to sensitive information from an API

through error messages . 78

A.13 An adversary can gain access to sensitive data by sniffing traffic to

Web API . 79

A.14 An adversary can gain access to sensitive data stored in Web API’s

config files . 79

A.15 Attacker can deny a malicious act on an API leading to repudiation

issues . 79

A.16 An adversary may spoof Cloud Edge Gateway and gain access to Web

API . 79

A.17 An adversary may inject malicious inputs into an API and affect down-

stream processes . 79

A.18 An adversary can gain access to sensitive data by performing SQL

injection through Web API . 80

A.19 An adversary may gain unauthorized access to Web API due to poor

access control checks . 81

A.20 An adversary can gain access to sensitive information from an API

through error messages . 82

A.21 An adversary can gain access to sensitive data by sniffing traffic to

Web API . 82

A.22 An adversary can gain access to sensitive data stored in Web API’s

config files . 82

A.23 Attacker can deny a malicious act on an API leading to repudiation

issues . 82

A.24 An adversary may spoof Database and gain access to Web API 83

A.25 An adversary may inject malicious inputs into an API and affect down-

stream processes . 83

A.26 An adversary can gain access to sensitive data by performing SQL

injection through Web API . 83

15

A.27 An adversary may spoof an system administrator and gain access to

the system management portal. 84

A.28 An adversary can gain unauthorized access to configure resources. . . 84

16

Chapter 1

Introduction

The rise of security incidents over the years is reflected by the rapid proliferation of

the cloud. As more organizations are moving their workload and data to the cloud, so

rises the operational cost and growing pains of maintaing a good security and keeping

up with an ever changing security landscape.

1.1 Motivation

In a report published in 2019, the Cybersecurity Insdiers found that 93% of organi-

zations are moderately to extremely concered about cloud security [3]. Two thirds of

those organizations claim that traditional security solutions either don’t work or are

too limited as shown in Figure 1-1a. In terms of security threats, 27% of the biggest

threats relate to data exflitration. 17% of attacks exploit an implementation specific

vulnerability as shown in Figure 1-1c.

While attacks are becoming more prominent, public clouds are less attractive to

attack than on-premise environments, prompting organizations to move their work-

load to a safer haven. A Forrester research shows that only 12% of breaches target

public cloud environments and that 37% of global infrastructure decision makers cite

improved security as an important reason to move to the public cloud.[4].

17

(a) How well do your traditional network security tools/appliances
work in cloud environments? [3]

(b) Biggest cloud security threats [3] (c) Sources of vulnerabilities [3]

Figure 1-1: Cloud Security report

18

When it comes to securing their own workloads, organizations today are provided

with a mix of tools, but often the tools are too complex and organizations don’t have

the expertize to use them properly. According to a Gartner report, customers of these

services often do not know how to use them securely [5]. That along with a shortage

of cybersecurity skills [6] highlights the need for innovative solutions to scale security

as the cloud grows.

1.2 Research Goal

The goal of this thesis is to demonstrate that cloud computing backed with evolu-

tionary algorithms trained to understand, generate, detect and prevent threats can

provide greater security benefits than today’s rule based and static defense solutions.

Sophisticated attacks today require intelligently targetting an endpoint, reverse

engineering its application and protocols, scanning a known vulnerabilities and ex-

ploiting them. Today automation to scan known vulnerabilities exists but requries

human supervision to sort through the data and generate a rule based attack or de-

fense plan depending on which side of the threat they are sitting on [7]. Without a

search gradient, weak automation will use brute force methods to find a vulnerability

while a strong automation requires a lot of supervision.

1.2.1 Research Questions

The goal of this research is to demonstrate that grammatical evolution can navigate

through a search space of attacks more efficiently than random search, and can beat

a static defense at small scale. It is also to demonstrate that grammatical evolution

can scale as we broaden the search space. This research aims to motivate the study

of coevolution as a means of defense for cyber security in the cloud to complement

or even replace existing static rule based defenses in Web Application Firewalls. We

will assert that the same heuristics developped to create a dynamic attacking agent

through grammatical evolution can be applied as a means of defense. We will leave

19

the demonstration for future work.

1.2.2 Research Approach

This research takes a holistic view of system security in the cloud. We expand on

the different subsystems involved in a cloud application, how they are chosen by a

system operator, how they interact with each other, and what they look like from an

attacker’s point of view. We then focus our scope to three threat scenarios chosen

because of their prominance, as well as an existing gap in methods to secure workloads

and data properly as shown in chapters 3 and 4.

We develop a methodology to mimic an attacker using grammatical evolution

and create a web service protected by a static application firewall to run our ex-

pirements. The setup was chosen to emulate a real threat scenario at a small scale,

by re-implementing known vulnerabilities and scaling down the resources required to

exploit them for the purpose of the experiment as described in chapter 5. We then

propse a methodology to change the the web application firewall from taking static

defense to a more dynamic one by applying the grammatical evolution heurisitcs

developped in this research.

1.3 Thesis Structure

Chapter 1 provides an introduction to the problem space, a motivation behind the

work, and the strategy used to achieve the thesis goal. Chapter 2 presents related work

in evolutionary algorithms and cybersecurity. Chapter 3 introduces the subsystems

used in this research and explores them through a literature review of the technologies

described. Chapter 4 explores a prominent case study for the threat scenario explored.

Chapter 5 explains the methodology behind the expirements. Chapter 6 delves into

the expirements and their results. Chapter 7 presents closing arguments, limitations

and future work.

20

Chapter 2

Related Work

Censorship evasion

Geneva is a genetic algorithm used for censorsip evasion. On-path censorship is

a method of censorship that sits outside the client-server communication path and

monitors copies of packets to analyze and interdict them when needed [8]. Inter-

diction occures when the censor injects a new packet to interfere with a connection

it deems inappropriate. Geneva plays a cat and mouse game with censors by using

Grammatical Evolution to manipulate client-side packets to confuse them into not

disrupting the communication. Heuristics used in geneva are similar to ones in this

study. Geneva’s approach is to operate in action trees. An action tree encapsulates

the modification scheme for an incoming request. When a request matches a trigger,

it enters as an action tree and is modified by the sequence in that tree. Each request

triggered performs an in-order traversal of the corresponding Action Tree and the leaf

node contains the final result. A strategy in Geneva is a combined forest of action

tree-trigger pairs.

A cognitive approach for botnet detection using Artificial Immune System

in the cloud

A botnet is a large group of computers infected with malicious software, used to

perform illegal activities such as Distributed Denial of Service attacks, or information

21

theft. A research published in 2014 proposed a heuristic inspired by immunology for

protecting the cloud against botnets[9]. The study uses Artificial Immune Systems

(AIS)[10] to model immune network theory, a negative selection mechanism and clonal

selection principles to create a basic immune response against the threat of botnets.

22

Chapter 3

Literature Review

In this chapter, we will provide a literature review of our system components, starting

with the cloud infrastructure. We explore the different types of services that exist to

build and run an application server. We explain Edge Computing and how system

builders can improve the performance and security of their web service by having a

gateway between the user and their server. We then review web application firewalls

(WAF), like ones sitting at the Edge, and introduce a widely used opensource im-

plemenation of a WAF called OWASP. We also dig into the basics of grammatical

evolution and why its application is relevant to our study. Finally we dig into cyber

security threats and how they are modeled and we will review the types of threats

and a modeling methodology called STRIDE.

3.1 Cloud Infrastructure

The National Institute of Standards and Techology defines cloud computing as “a

model for enabling convenient, on demand network access to a shared pool of config-

urable computing resources (e.g, networks, servers, storage, applications, and services)

that can be rapidly provisioned and released with minial management effort or ser-

vice provider interaction.” [11]. Currently, the cloud computing types can be either

public, private (or on-premise) or a hybrid combination of both. In this section, we

will dig into the different types of setups, as well as how the various computing nodes

23

are interconnected.

3.1.1 Web Application Servers

Figure 3-1: Summary of key differences of different application server infrastructures
[1].

An application server is a public or private endpoint that offers a service or exhibits

one or many functions over the web. Cloud providers offer three levels of abstraction,

each of them allowing different levels of control. More control offers flexibilty but

comes at the cost of being responsbile for the maintenance and security of the sub-

system. The three types of cloud services, along with the private on-premise model,

are illustrated by Figure 3-1 and described below:

1. On-Premise: The system owners manage the entire stack descibed in Figure 3-1.

2. IaaS: An Infrastructure as a Service offers the system owners complete control

24

over the applications and their runtime. The hardware, network, storage is

leased and managed by the IaaS provider. IaaS instances are typically rented

Virtual Machines (VMs) [1].

3. PaaS: A Platform as a Service offers a framework for the system owner to limit

the scope of focus on the application development and data management. The

system owner is only responsible for securing their application and data while

the cloud provider secures the rest of the stack.

4. SaaS: A Software as a Service utlizes the internet to develop a full web appli-

cation. System owners typically aim to to build their own SaaS using one the

other frameworks.

The main takeaway is that on-premise applications are hosted in an infrastructure

controlled by the system owner, while cloud applictions are hosted in a computing

infrastructure managed by major cloud providers who have resources to build a dis-

tributed system at large scales. For an on-premise solution, the system owner requires

operational expertise for all the aspects of the infrastructure. This includes security,

networking and the operational challenges of dealing with a datacenter. A cloud solu-

tion takes advantage of the economies of scale the large cloud providers have access to.

Major cloud providers include Amazon, Microsoft, Google, IBM and Oracle. Those

big players have an uparalleled global footprint thats costs billions of dollars a year

to build. Today cloud adoption continues to be one of the fastest-growing segments

of system design. According to an IDC[12] research conducted in 2019:

1. By 2021, over 90% of enterprises worldwide will adpot a mix of on-premise and

cloud infrastructure in their systems.

2. By 2022, 90% of web appications will be built as composite applications using

public and internal API-delivered services; half of those will leverage AI and

machine learning.

3. By 2022, 70% of enterprises will deploy unified VMs, Kubernetes, and multi-

cloud management

25

4. By 2023, 10% of enterprise on-premise workloads will be supported by pub-

lic cloud stacks outside of public cloud providers’ datacenters and situated in

customer datacenters and edge locations.

5. By 2025, 60% of enterprise IT infrastructure spending will be allocated to pub-

lic cloud and a quarter of enterprise IT applications will run on public cloud

services.

In the context of this research, the points highlight that as the cloud scales, work-

loads become more distributed, but as customers migrate to the cloud, attacks become

more centralized to the handful of cloud providers. From an attacker’s perspective,

a centralized system generally means less potential targets to search through. For

example, when it comes to deciding which target to try to overwhelm in a potential

Distributed Denial of Service attack, the choice becomes more obvious. However an

attacker is unlikely to have access to the resources required to overwhelm a major

cloud provier who invests billions of dollars a year to guarantee their availability is

close to 100% [13]. This means the next best vulnerablilty lies in the implemenation

of the application server, and attack strategies will be informed by the specifics of the

application and its implemenation.

Application Servers fall into two function categories. They can serve static in-

formation (videos, images, music, software updates). They can perform dynamic

operations like running a full fledged application (e.g. Online banking, shopping)

or provide support to the applications themselves (analytics, monitoring, etc..) In

either case, those functions are typically built using RESTful APIs [14]. Attacker

probing for application vulnerablilties would use those same APIs to interact with

their engagement environments. The RESTful specification provides a framework for

clients to run fuctions on a server but it does not provide any information on what the

function does and how to call it. Tools like Swagger [15] exist to fill those gaps. Web

services typically provide a public specification for their application through Swagger

documentations. Like any documentation, they are prone to being incomplete and

succeptible to human errors. Another way to extract calls exposed by a web server is

26

Figure 3-2: Each subnetwork is called an Autonomous System (AS) and is a large
pool of routers run by a single organization, typically an Internet Service Provider [2]

with the help of profiling tools like RapidAPI [16].

3.1.2 Edge Computing and BGP Networks

The internet is comprised of many interconnected nodes that sometimes need to talk

to each other. Packets need a way to naviated these nodes to go from their source

and destination. This method of routing is a achieved with a protocol called the

Border Gateway Protocol or BGP[2]. BGP works like the postal service, navigat-

ing through clusters of nodes called Autonmous Systems. Each of these systems is

assigned a number that can be thought of as zip codes, to keep with the postal ser-

vice analogy. In reality, they are typically created and controlled by Internet Service

Providers. Those providers form a peer to peer network and have peering contracts

with one another to create routes. Routing from one peer network to another largely

27

Figure 3-3: This Figure shows 6 AS. If AS1 need to go to AS3, It has 2 different
options [2]

depends on performance metrics but also heavily takes into account the cost of the

peering contract. A packet going from Boston to San Francisco will hop through

many Autonmous Systems without necessarly following the fastest route along the

way [17].

The experience for the end user can be suboptimal if an Autonmous System

perfers peering to a cheaper route than a faster, more expensive one. Edge nodes are

globally distibuted proxy nodes that tend to be close to the end users and aim to

normalize the experience for services sitting behind them. Application Servers paired

with Edge nodes benefit from performance enhacements by having users terminate

their connection at the node instead of the application server if the node is closer. For

example, a user in Boston looking to connect to a server located in San Fransico will

benefit from having their connection terminate in an Edge node in Boston. The Edge

node has a direct connection to the application server in San Francisco, therefore

skipping BGP routing. The Edge node also can contain cached content that the

application server wishes to deliver as close to their user as possible. Example of

cached conent is music, video, images, or software updates. This is called last-mile

content delivery [18].

In addition, application servers sitting behind an Edge node recieve security en-

28

Figure 3-4: An Edge node sits between the user and the service and provides content
delivery, service acceleration, and protection against various types of attacks

hancements. Not only does the distributed network act as a natural line of defense

against Distributed Denial of Service attacks (see 3.4), but by virtue of being the first

point of contact, Edge nodes act as gatekeepers against a would be attacker. Edge

services are offered by Cloud Providers such Amazon AWS, Microsoft Azure, Google

Cloud. They are also offered by specialized companies like Akamai or CloudFlare.

3.2 The Web Application Firewall

Figure 3-5: A Web application firewall sits between the end user and the application
server.

29

AWeb Application Firewall (WAF) is a software or a network device that enhances

the security of web applications. Unlike a traditional firewall that typically operates

on the networking layer (TCP/UDP), WAFs operate at the application layer (HTTP).

As more companies move their workloads to the cloud, attackers have shifted their

attention to the implementation of applications. According to a study conducted

by Trustware Global Security, a cybersecurity consulting firm, over 60% of all cyber

attacks target web applications [19]. In terms of location, in 2019, 54% of attacks

targeted on-premise corporate environments, down 2% from 2018. In contrast, cloud

services accounted for 20% of attacks, from 7% the previous year. These statistics

highlight a need for cloud based web application firewalls to protect workloads with

real-time monitoring, logging, debugging, and access control.

A WAF can run on the same server as the application it is protecting, or on a

proxy server sitting in front of it (see Section 3.1.2). It is composed of a firewall

engine as well as a managed ruleset that defines the detection rules against common

attack patterns. One such ruleset is the Open Web Application Security Project Core

Rule Set (OWASP CRS) [20]. ModSecurity[21] is a popular opensource WAF engine

developped by the maintainers of the OWASP ruleset. Cloud providers like Amazon

AWS[22], Microsoft Azure[23] and Google[24] offer their own WAF engines that run

the OWASP Rule Set. For this research, we use Microsoft Azure’s Web Application

Firewall [23]. The advantage of using an opensource ruleset is that it is battle tested

and exhaustive. There is little benefit to propriartary rulesets. Herd immunity is the

heuristc to follow since the majority of attacks make it to the public domain [25].

Appendix B.1 shows an example rule that defines detection and projection against

HTTP Request Smuggling. Rules from the OWASP ruleset follow the syntax below:

‘‘SecRule VARIABLES OPERATOR [ACTIONS]’’

A rule typically uses regex matching to detect if the argument of a request matches

a known attack pattern. For example, to detect HTTP Request Smuggling, the rule

checks if the argument of a call ends with a new line and starts with a new REST

call (get,post or head, etc...). The last parameter in the rule definition above specifies

30

what actions should be taken if a condition is matched. The actions can be simply

logging, or it could be blocking, blacklisting, redirecting the caller.

3.3 Grammatical Evolution

Grammatical Evolution is a form of evolutionary algorithm that performs an evolu-

tionary process on variable length strings. The strings are generated by interpreting

a set of production rules written in a Backus-Naur form (BNF) or extended Backus-

Naur form (eBNF). The output is then evaluated using a fitness function and com-

pared to a population of its peers, generated randomly at first. After evaluation,

selection happens. The features from the fitest samples have the highest probabilty

being selected to create the next generation via crossover and mutuation. Crossover

is the combination of features from two individuals to create a third one. Mutuation

then randomly changes a feature according to the genome, to explore new features.

The BNF grammar, developped from ALGOL 60 [26], is composed of terminals

which are items that will be generated and non-termials which are items that can

be expanded.

for example:

<number> ::= <digit> | <number> <digit>

<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

The above describes the grammar of a number. If the goal is to generate the

number 12345, a fitness function can be created such that 12345 would have a payoff

of 5 while 12300 and 00345 would both have a payoff of 3. A genetic algorithm

will ultimately converge to the best solution. Genetic Algorithms are inspired by

evolutiory processes. It is only natural that they are applied in the field of genetics

to model protein sequencing and the signals sent by strings of amino-acids.[27].

In cybersecurity, a notable framework called RIVALS was created to study the

dynamics of coevolution with adversarial genetic programming [28]. The framework

combines adversaries, engagement environments, and competitive evolution to exe-

cute coevolution through the dynamics of adversarial engagements in cyber networks.

31

3.4 Cyber attacks and Threat model

In this section we will expand on application level vulnerablilties. We categorize

threats into three buckets as follows:

1. Social engineering attacks that aim to compromise individuals in an organi-

zation in order to gain access to their credentials. The attacks can be highly

targetted, such as an attacker creating a fake social media account that mirrors

their target’s real and trusted acquaintance in order to gain access to the target.

They can also be cast through a broader net, such as phising emails.

2. Unsophisticated denial of service attacks such as Distributed Denial of Service

attacks typically operate on the network and aim to overwhelm their target. An

example of such attack is a TCP SYN flood. They are prominent because they

are cheap and easy to set up. At scale, their distributed and seemingly pattern-

less nature makes them difficult to detect and defend against. Establishing a

TCP session requires a three-way handshake between the parties involved. The

first packet sent should have the SYN flag set which enables synchronization of

the packet sequence number between the parties involved. An attack can flood

a target with many connection requests from many different locations in such

a way that the target cannot keep up, causing it to saturate and enventually

crash.

3. Sophisticated Application level attacks operate at the application layer and aim

to exploit a vulnerablilty in the system implemenation. We will expand on these

types of attacks in the following sections.

3.4.1 Threat Model

Threat modeling allows system architects to identify and mitigate security issues as

early as the design phase of the system lifecycle. Threat modeling tools [29], help

turn system diagrams into threat vector tables to analyze potential threats.

32

An industry standard method used to describe and categorize the various types

of threat is called the STRIDE method [30]. It categorizes threats into six types1:

1. Spoofing: Involves illegally accessing and then using another user’s authentica-

tion information, such as username and password.

2. Tampering: Involves the malicious modification of data. Examples include

unauthorized changes made to persistent data, such as that held in a database,

and the alteration of data as it flows between two computers over an open

network, such as the Internet.

3. Repudiation: Associated with users who deny performing an action without

other parties having any way to prove otherwise - for example, a user performs

an illegal operation in a system that lacks the ability to trace the prohibited

operations. Non-Repudiation refers to the ability of a system to counter re-

pudiation threats. For example, a user who purchases an item might have to

sign for the item upon receipt. The vendor can then use the signed receipt as

evidence that the user did receive the package.

4. Information Disclosure: Involves the exposure of information to individuals who

are not supposed to have access to it—for example, the ability of users to read

a file that they were not granted access to, or the ability of an intruder to read

data in transit between two computers.

5. Denial Of Service: Denial of service (DoS) attacks deny service to valid users—for

example, by making a Web server temporarily unavailable or unusable. Pro-

tection against certain types of DoS threats improves system availability and

reliability.

6. Elevation of Priviledge: An unprivileged user gains privileged access and thereby

has sufficient access to compromise or destroy the entire system. Elevation of

1Description taken from https://docs.microsoft.com/en-us/azure/security/develop/threat-
modeling-tool-threats

33

Figure 3-6: Threat model diagram for a simple system of a Web application interface
sitting in front of an Edge node. The Web API has access to a database.

privilege threats include those situations in which an attacker has effectively

penetrated all system defenses and becomes part of the trusted system itself.

Figure 3-6 shows an example of a threat model diagram created using the Microsoft

Threat Modeling Tool. See Appendix A for details and output.

3.4.2 Advanced Perisitant Threat (ATP) and Cyber Killchain

An advanced persistant threat [31] is a prologned network attack on a well-defined

target with the intention to compromise its system and gain information about it.

They are difficult to detect [32] and typically originate from highly organized and well

funded efforts by governments, military organizations, and non-state actors. Because

a great deal of effort and resource goes into carrying it out, attackers typically focus

on high value targets with the goal of stealing assets. An attack strategy is sometimes

referred to as a killchain[33] (Figure 3-7)

In Chapter 4, we examine recent case studies of such attacks. In Chapter 5 we

establish a strategy by structuring our own simplified killchain.

34

Figure 3-7: Cyber killchain

35

3.4.3 Types of attacks studied in this research

Remote Code Exection

Remote code exection vulnerablilty alows attacks to run arbitrary code in a given

remote application [34]. This be achieved by hijacking the logic of the web application

or by exploiting a weak implemenation or vulnerablilty of underlying HTTP protocols.

Remote code exceution typically present the biggest threat to a system as they give

the attacker unhinged access to the entire system. The attack will have access to

anything the application does, including data and other subsystems.

Information Disclosure

An information disclosure vulnerablilty exists if an attack is able to get the application

to provide information it wasn’t originally designed to provide [34]. This could be

information about the system itself, giving the attacker an edge to exploit more

vulnerablilties, or data about the organization and its customers.

Information disclosure can be achieved if the attack is able to bypass authnetica-

tion and or authorization. Many applications require the caller to supply an authen-

tication context. This could be a user credentials (username and secret) or service

credentials (service ID and secret). An attacker can obtain an authentication context

by compromising the user or service or by exploiting a vulnerablilty in the authen-

tication logic, such as weak encryption. Compromising an authentication context is

not enough. The user or service requires proper authorization to a given resource

for it to be comprised. An authorization bybass attack happens when a user obtains

extra access to a resource they are not priviledged to have, by elevating their own

priviledge for example.

Denial of Service

A denial of service attack finds and exploits a vulnerablilty that causes the application

to crash or become unresponsive, denying a legitimate user access to the application.

Denial of service attacks can be persistant or non-persistant [34]. A persisitant attack

36

disrupts a service until a repair action is taken from the services administrator. A

non-persistant attack lasts as long as the attack is engaging the application with the

trigger conditions that disrupt it. Denial of service attack can be achieved through

CPU or Memory exhaution techniques that find and exploint algorithmic complexity

of a given function’s implementations.

HTTP Request Smuggling

Figure 3-8: HTTP Smuggling attack diagram

HTTP attacks sit at the application layer. HTTP’s RFC specifies the agreement

between client and server applications consistency. One such specification is setting

the HTTP packet’s “content-length”. This packet contains the length of the payload

being sent. The RFC forbids setting this header more than once [35] but it is up to

the web application implementation to respect that. In fact the vast majority of web

server/proxy configurations are vulnerable to a form of HTTP smuggling [36].

HTTP Request Smuggling happens when the proxy and the server don’t agree on

how they read the content-length header. Figure 3-82 shows an example of HTTP

request smuggling.

2taken from https://portswigger.net/web-security/request-smuggling

37

Below is an example of an attacker sending a packet with content-length header

set twice.

POST http ://www. t a r g e t . s i t e / somecgi . c g i HTTP/1 .1

Host : www. t a r g e t . s i t e

Connection : Keep−Al ive

Content−Type : app l i c a t i on /x−www−form−ur lencoded

Content−Length : 0

Content−Length : 45

GET /˜ at tacke r / foo . html HTTP/1 .1

Something : GET http ://www. t a r g e t . s i t e /˜ v ic t im /bar . html HTTP/1 .1

Host : www. t a r g e t . s i t e

Connection : Keep−Al ive

From the proxy’s perspective, it sees the header section of the first (POST) request,

it then uses the last Content-Length header (which specifies a body length of 45 bytes)

to know what body length to expect [36]

POST http ://www. t a r g e t . s i t e / somecgi . c g i HTTP/1 .1

Host : www. t a r g e t . s i t e

Connection : Keep−Al ive

Content−Type : app l i c a t i on /x−www−form−ur lencoded

Content−Length : 0

Content−Length : 45

GET /˜ at tacke r / foo . html HTTP/1 .1

Something :

The web server sees the first request (POST), inspects its headers, uses the first

Content-Length header, and interprets the first request.

POST http ://www. t a r g e t . s i t e / somecgi . c g i HTTP/1 .1

Host : www. t a r g e t . s i t e

Connection : Keep−Al ive

Content−Type : app l i c a t i on /x−www−form−ur lencoded

Content−Length : 0

Content−Length : 45

The body is empty. The web server answers this request, and it has one more

partial request in the queue

GET /˜ at tacke r / foo . html HTTP/1 .1

Something :

38

Since this request is incomplete (a double CR+LF has not been received, so the

HTTP request header section is not yet complete), the web server remains in a wait

state. The proxy now receives the web server’s first response, forwards it to the

attacker and proceeds to read from its TCP socket.

GET http ://www. t a r g e t . s i t e /˜ v ic t im /bar . html HTTP/1 .1

Host : www. t a r g e t . s i t e

Connection : Keep−Al ive

From the proxy’s perspective, this is the second request, and whatever the web

server will respond with, will be cached by the proxy for http://www.target.site/ vic-

tim/bar.html. The proxy forwards this request to the web server. It is appended to

the end of the web server’s queue, which now looks as following

GET /˜ at tacke r / foo . html HTTP/1 .1

Something : GET http ://www. t a r g e t . s i t e /˜ v ic t im /bar . html HTTP/1 .1

Host : www. t a r g e t . s i t e

Connection : Keep−Al ive

The attacker succesfully completed the smuggling attack.

39

THIS PAGE INTENTIONALLY LEFT BLANK

40

Chapter 4

Case study: Equifax - An HTTP

Header Attack

In March 7th 2017, Equifax was hit with the one largest security breach in history

[37]. The data breach was caused by an application vulnerabilty in their customer

complaint web site that ultimately allowed access to the rest of the system. 147.9

million customers were compromised, more than 40% of the population of the United

States. Equifax stores highly sensitive personal data including names, addresses, dates

of birth, social security numbers, and drivers licenses. 200,000 credit card numbers

were also compromised.

4.1 How it happened

The attack exploited a known vulnerabilty in the customer complaint web portal.

They were able to infiltrate the backend data servers through the web portal until

they landed on a database containing usernames and passwords stored in plain text.

The vulnerabilty in question was in the Apache Struts framework [38]. Apache

Struts is an open source development framework for creating web services. Versions

of Apache Struts prior to the vulnerabiltiy patch have incorrect exception handling

during file-upload attempts. An attacker can exploit the Content-Type, Content-

Disposition, or Content-Length HTTP header and generate a cross-scripting attack

41

with a“#cmd̄’’ string.

4.2 Impact and Cost

147.9 million accounts were compromised, 143 million of them had their personally

identifying information leaked, 200,000 had their credit card numbers leaked. In May

2019, Equifax said it spent $1.4 billion in cleanup costs after the breach [39]. This

includes upgrade to the security. In July 2019, the company was required to spend

an additional $1.38 billion to resolve customer claims.

4.3 Lessons learned

1. Patching vulnerabilties much be done with urgency. The attack happened weeks

after the vulnerabilty was discovered and patched by Apache.

2. A system is only as secure as its weakest link. The subsystem containing the

data was internal. However, compromising the web portal gave the attackers a

vector of entry. The data should not have been stored in plain text just because

it was in an internal server.

3. Authentifcation is not enough to protect access to data. Data governance with

proper authorization is just as key. Access should only be granted on a “need

to know” basis.

42

Chapter 5

Methodology

In this chapter we will describe the methodology used for the experiments documented

in Chapter 6. Our setup takes components selected from those described in Chapter 3

and chosen to best meet our research goal defined in chapter 1.

5.1 Attacker-Defender system setup

Figure 5-1: The attacking client is an HTTP client implemented in python 3. The
defending server is an Azure Function instance sitting in front of an Edge node.

The setup is composed of a client that acts as the attacker, and of an HTTP

Server that acts as a defender as shown in Figure 5-1. The client is driven by a

genetic algorithm that generates instructions interpreted into HTTP client requests

whose parameters and payload are are the subject of the evolution. The requests

43

first hit an Edge server running a Web Application Firewall (WAF). They are then

forwarded to the web application server that then processes the request and generates

a response. That response is sent back to the HTTP client via the Edge server. The

client parses the response, runs it through a fitness function, feeds the results back

to the genetic algorithm, and a new generation of requests is formed.

5.1.1 The Attacker: A client running a grammatical evolu-

tion algorithm

Application Runtime

At the core of the client is the genetic algorithm (GA) running a Grammatical Evolu-

tion (GE) implemented using the Donkey GE framework [40]. Donkey GE is a basic

implementation of Grammatical Evolution using python3. The algorithm generates

instructions based on a grammar formulated in BNF (Chapter 3.3). The instructions

are interpreted as HTTP requests. The responses of those requests are evaluated

through a fitness function that evaluates the returned content (payload) and meta-

data (response time, status code). The payoffs are then fed back to the GE that will

then create a new population for generation.

Grammar Definition

The grammar is written in BNF. It expresses how the HTTP requests sent by the

attacker to the server are formed. The goal is to have the grammar run through a

python engine that interprets it into HTTP requests. Throughout the course of the

experiments, we evolve the grammar to express more and more complex concepts

that revolve around attack missions. Our goal is for the grammar to be interpretable

by both the attacking and defending algorithms. For the purpose of this research

we will limit the scope of the GE application to the attacking side of the adverserial

engagement. Applying this method to the defending side and studying coevolution is

reserved for future work.

Throughout our experiments, we evolve the grammar four times (Figure 5-2).

44

With each version the grammar’s expression converges from the description of a

generic HTTP Request with unrestricted parameters to a complete attack strategy

with parameters scoped to a mission objective. The grammar evolves as described

below:

1. Generic Request: The first version of the grammar describes a generic HTTP

request. A request is parameterized by its action. Another way of thinking

about a generic HTTP request is with the following sentence: “Given an end-

point, make an HTTP request to a function called ⟨𝑛𝑎𝑚𝑒⟩” where ⟨𝑛𝑎𝑚𝑒⟩ can

be any string. An unbound string search will very likely generate non-sensical

function names and an endpoint should return an HTTP response with status

code 404 “not found”. This grammar serves to lay the groundwork for more

complex expressions of attacks.

2. Specialized Request: The second version narrows the unbound action space of

an HTTP request by specializing it into a REST call. This can be thought of as

saying “Given an endpoint, and a set of know function names, make an HTTP

request to function called ⟨𝑛𝑎𝑚𝑒⟩” where ⟨𝑛𝑎𝑚𝑒⟩ is a known function.

3. REST Call: The third version expands the concept and generalizes the REST

call by introducing the API Action. This version also introduces the notion of

“missions”. Missions will inform fitness and strategy for a given API action.

This can be thought of as meaning “Given an endpoint, make an HTTP request

to call a function ⟨𝑛𝑎𝑚𝑒⟩ that takes arguments ⟨𝑎𝑟𝑔𝑠⟩ with the objective to

fulfill mission ⟨𝑚𝑖𝑠𝑠𝑖𝑜𝑛⟩”, where ⟨𝑛𝑎𝑚𝑒⟩ is a REST call that takes arguments

⟨𝑎𝑟𝑔𝑠⟩ and mission is a type of attack.

4. Missions: The final version sets up the groundwork for future work and inter-

operability with a GE algorithm on the defense side to create a framework for

coevolution. This version rescopes the grammar away from “requests” to define

“missions”. The sentences can be interpreted as meaning “Given an endpoint,

run a set of ⟨𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠⟩ with their method ⟨𝑚𝑒𝑡ℎ𝑜𝑑⟩ and API Action ⟨𝑎𝑐𝑡𝑖𝑜𝑛⟩.”

45

This sentence becomes very much tailored towards the specificity of attacks

and how to execute them. For example, denial of service would have methods

to exploit poor runtime performances, while “infiltrate” will use methods like

HTTP Request Smuggling as a vehicle for a cross-scripting attack. The scope

of attacks and methods can easily be expanded with this grammar.

46

Figure 5-2: Concepts described by the grammar
47

5.1.2 The Defender: An application server behind an Edge

node running a Web Application Firewall

The Application Server

The application server is implemented as a Platform as a Service (PaaS - see Chap-

ter 3.1.1). Specifcally, we run an instance of an of Azure Function. Azure functions are

a type of serverless computing[41] that abstracts away any underlying infrastructure

and lets system owners focus solely on designing and implementing their application.

The infrastructure’s implementation and security are managed by the cloud provider

(Azure in this case), leaving us to focus on developping and securing the application

and its data. The Azure Function implements three public functions and one internal

function as described in Table 5.1

The application server implements an additional placeholder function that facil-

itates a cross-script attack through HTTP Request Smuggling (See Chapter 3.4).

Recall that a cross script attack through HTTP smuggling occurs when a proxy

(Edge) server is tricked into running a hidden command on an application server (See

Chapter 3.4). We emulate this flow by having the Edge server recognize an HTTP

Request Smuggling attack and setting a flag in the Web Application Server to exe-

cute the hidden function when the condition occurs. The hidden function is otherwise

uncallable.

48

Table 5.1: Application Server API

Method Arguments access policy description

ExpectedOperation None public Always returns HTTP status code
200 OK

ExpensiveOperation string public The function has a high algorithmic
complexity. The runtime duration is
𝑡 in 𝑚𝑠, defined as 𝑡 = 100𝑥+ 10𝑦2

where 𝑥 is the string length and 𝑦 is
the number of non alphanumerical
characters.

ForbiddenOperation None private Only the Edge server is allowed
to call it. Returns HTTP status
code 403 FORBIDDEN for all other
callers

Table 5.2: internal function to emulate a cross script attack through HTTP smuggling.

Method Arguments access policy description

UnknownOperation None hidden Only executable if a cross script at-
tack through HTTP smuggling is
succesful. Application Server re-
turns a HTTP status code 404 NOT
FOUND otherwise.

49

The Edge Server and Web Application Firewall

The Edge server is an instance of an Azure Edge site that sits in front of the applica-

tion server and provides protection against attacks through a WAF (See Chapter 3.2).

For our experiment we disable protection against a HTTP Request Smuggling Attack

(See Figure 5-3) to measure GEs convergence towards the attack.

Figure 5-3: Azure Edge WAF policy with protection against a HTTP Request Smug-
gling Attack disabled

5.2 Methodology Limitations

Unless otherwise specified, the evolution runs with a population size of 20 and iterates

through 40 generations (see section 5.3). The strategy also implements four phases of

a cyber killchain. Each phase translates to an HTTP Request (see section 5.4). This

results in a total number of requests run per experiments of 1600. A normal request

takes about half a second to complete, and a disruptive request takes 10 seconds to

complete since the client has to wait for the server to respond. This means a single

experiment takes about 40 minutes to an hour to run and makes repeatability at

scale computationally intractable with normal computing resources. We will discuss

strategies to improve this constraint in future work with parallalization of independent

50

requests (See Chapter 7.2).

5.3 Parameters tested in Grammatical Evolution

Our grammar forms syntactically correct queries, therefore do not employ any special

crossover or mutation operators. Individuals are randomly generated queries with ar-

guments of variable length. An unconstrained search is performed on these strings due

to the genotype-to-phenotype mapping process that generates syntactically correct

individuals.

The parameters at play in our experiments are the population size, the number of

generations, the mutuation rate, the tournament size, and the crossover probabilty.

We will only vary the population size and the number of generations and leavethe rest

of the parameters constant. Our experimental setup is described in Table 5.3. Our

goal is to demonstrate that GE algorithms perform better than random search. As

we broaden our search space by increasing the complexity of our grammar, GE can

scale where random search cannot. For this purpose, setting the crossover, mutation

probabily, tournament and elite sizes to their standard values is sufficient. Having

the GE algorithm stuck in local optima does not counter the research goal of proving

its effectivess.

Table 5.3: Parameters for each experiment run.

Denial Of Service All Attacks
Experiment GE

with-
out
strat-
egy

GE
with
strat-
egy

GE
param-
eter
sensi-
tivity
test

stealthy
strat-
egy
vs all
vulner-
abilties

stealthy
vs DoS
only

persistant
strategy
vs all
vulnera-
bilties

persistant
strategy
DoS
only

population size 4 20 20
generations 20 4 40
max length 10 10
elite size 10 10
tournament
size

2 2

crossover prob-
ability

0.8 0.8

mutation prob-
ability

0.1 0.1

51

5.4 Attack selection and Strategy

Our experiments are centered around the Denial of Service attack since it can be

achieved through CPU or Memory exhaustion techniques that find and exploint al-

gorithmic complexity of a function’s implementations. Disruption gives us a direct

measure of fitness via the response time for the request. The GE algorithm’s search

gradient can follow the resulting latency from a request it generates. The addition of

infiltration and exfiltration via HTTP Request Smuggling broadens our search scope

and serves to demonstrate that GE scales as we increase the number of attacks de-

scribed by the grammar. The attack selection also puts into play the high profile

attack described in the case study see chapter 4). For our strategy, we implement a

killchain scaled down to the the core phases below (see chapter 3.4):

1. Phase 1 - Reconnaissance: The first query is sent to act as a baseline for recon-

naissance. The results will inform the subsequent phases.

2. Phase 2 - Attack: In this phase, the attacker transforms the query to make it

harmful to the server.

3. Phase 3 - Exploit: In this phase the query doubles down on an attack if it was

not succesful in the previous phase. For denial of service, this means re-applying

the disruptive transformation. In this case, we double the argument size. Phase

3 is attempted at most twice. If an attack is not succesful at taking down an

endpoint but is able to slow it down, the attacker is able to measure the impact

of the first query and of any transformation applied.

The strategy executes the killchain with at most four HTTP request calls, as

shown in the table 5.4.

52

Table 5.4: The 3 phases of a killchain. In the exploit phase of the DoS attack, if the
attack did not take down the service but slowed it down, the algorithm measures the
impact of the attack and attempts to double down on the effort for up to 2 attempts.

Request # Denial of Service Infiltration Exfiltration
1 Reconnaissance
2 Attack
3 Exploit
4 Exploit

5.5 Search space

Our goal is to demonstrate that Grammatical Evolution can navigate through a broad

attack search space better than random search. We start with a narrow searchspace

and broaden it as we expand our grammar (see section 5.1.1)

The proof of concept explores three HTTP Requests, of which only one will suc-

ceed. The size of the search space is therefore 𝑛𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 = 3. Next, we narrow the

HTTP Requests to a single action known to have a high algorithmic complexity. The

request search space is reduced to a size of 𝑛𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 = 1. The call however has an argu-

ment of type “string” of variable length of up to 10 characters. A string is defined as

a combination of uppercase letters with 𝑛𝑢𝑝𝑝𝑒𝑟 = 26 possible choices, lowercase letters

with 𝑛𝑙𝑜𝑤𝑒𝑟 = 26, digits with 𝑛𝑑𝑖𝑔𝑖𝑡𝑠 = 10 possible choices, and 21 special characters

with 𝑛𝑠𝑝𝑒𝑐𝑖𝑎𝑙 = 21 possible choices. A 10 character string creates a search space of

𝑛𝑠𝑡𝑟𝑖𝑛𝑔 = (𝑛𝑢𝑝𝑝𝑒𝑟 + 𝑛𝑙𝑜𝑤𝑒𝑟 + 𝑛𝑑𝑖𝑔𝑖𝑡𝑠 + 𝑛𝑠𝑝𝑒𝑐𝑖𝑎𝑙)
10 ≈ 1019 possible values.

The next experiment further expands the request search space by covering all

𝑛𝑎𝑝𝑖 = 3 functions supported by the application server as well as the 𝑛𝑥𝑠𝑐𝑟𝑖𝑝𝑡 = 1

function the attacker aims to infiltrate. The total number of functions is 𝑛𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 =

𝑛𝑎𝑝𝑖+𝑛𝑥𝑠𝑐𝑟𝑖𝑝𝑡 = 4. We also introduce the concept of missions. The 𝑛𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 = 3 types

of missions are “infiltrate”, “exfiltrate”, “disrupt”. Our search space size becomes:

𝑛 = 𝑛𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠.𝑛𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠.𝑛𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 ≈ 1020

Finally, for our last experiment, we rescope the grammar around the mission and

away from requests. The number of missions and API calls remains unchanged and

the order of magnitude of the search space size remains 𝑛 ≈ 1020.

53

5.6 Measure of fitness

We set the payoffs for metrics that give off strong signals of success to have an order of

magnitude of 103. Penalities for metrics that give off strong signals of failure have an

order of magnitude of 102. Payoffs/penalities for metrics that give off a weak signal of

success/failure have an order of magnitude of 101. The scores were assigned based on

desirabilitly of outcome. For this study we consider all attacks to be equally weighted.

A strong measure of success is succesfuly executing an attempted attack. We reward

this condition with highest payoff (e.g. getting a HTTP status code response of

“500 - Server Error” for denial of service attack). A strong measure of failure is

defined if the objective of the attack was not achieved. Here there is no intrinsic

consequence to failing. It is mearely undesirable. A weak meaure of success is taking

a step in the right direction. For Denial of Service, that means creating latency. For

each milisecond of latency we award a small payoff to create a search gradient. A

weak measure of failure is taking a step in the wrong direction and generating noisy

requests. A noisy request is a request that doesn’t accomplish any objective and does

not give any meaningful data. An example of a noisy request is one that results in the

server returning a response with HTTP status code of “404 - Not found”. Assigning a

negative payoff for these requests should filter them out with each generation. Given

the payoffs above, we defined fitness to be the sum of payoffs of the signals described

in Table 5.5.

The type of startegy applied will also inform the fitness. A cautious strategy

penalizes failure and wasted iterations. The attacker’s goal is to remain undetected.

A bold strategy gives no penalties. The attacker’s goal is to disrupt as quickly as

possible. The fitness of types of strategies will be measured and compared. In the first

experiment we compare an evolutionary algorithm that has strategy with one that

doesn’t 3.4. The bold and cautious strategies model persistant and stealthy attacks

[42]. The payoff equations associated with each strategy is represented in Table 5.5

54

Table 5.5: Payoff Table.

Strategy
Condtion Bold Cautious
An attempted attack is succesful 1000 1000
An attempted attack failed 0 -100
The request exposes a vulnerabilty other than the attempted attack. 100 100
Request failed 0 -10

55

THIS PAGE INTENTIONALLY LEFT BLANK

56

Chapter 6

Experiments

Table 6.1: Experimental Setup. The setup covers the baseline of random search, the
effect of different strategies in GE and the paramater sensitivity of population and
generation sizes. The size of the search space remains relatively unchanged but the
different grammars have different search restrictions (See Figure 5-2 for Grammar
details)

PoC Denial Of Service All Attacks Mission Centric
Section 6.1 6.2.1 6.2.2 6.2.2 6.2.2 6.3.1 6.3.1 6.3.2 6.3.2 6.4 6.4 6.4 6.4
Grammar generic

request
N/A special request rest call mission

population 4 N/A 4 4 20 20 20 20 20 20 20 20 20
generations 10 N/A 20 20 4 40 40 40 40 40 40 40 40
strategy No No No Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
server vul-
nerabilities

All All All All All All DoS All DoS All DoS All DoS

search
space

4 1019 1019 1019 1019 1020 1020 1020 1020 1020 1020 1020 1020

In this chapter we dive into the experiment results using the methodology de-

scribed in Chapter 5. We start with a simple HTTP request and evolve it into a full

fledged set of attack “missions” as described by Figure 5-2.

Table 6.1 highlights the experimental setup. Section 6.1 is a proof of concept

implementing a generic HTTP client driven by GE. In Sections 6.2.1-6.2.2, we build

on the proof of concept to investigate the Denial of Service attack. We contrast and

compare random search with our GE algorithm with and without a strategy. Fi-

nally we test parameter sensitivity by increasing the population size and lowering

the number of generations, keeping the total number of requests generated constant.

Sections 6.3.1-6.3.2 broadens the breadth of attacks by introducing HTTP Request

57

smuggling as a means of generating a cross-script attack (infiltration), and an infor-

mation disclosure attack (exfiltration). We contrast and compare two strategies: A

“cautious” strategy that aims to be stealthy, and a “bold strategy” that aims to be

disruptive. The bold and cautious strategies model persistant and stealthy attacks

[42]. Finally, in Section 6.4 we run the experiments with a modified grammar scoped

around formulating an attack mission statement rather than an HTTP Request (see

Figure 5-2 for details).

6.1 Proof of Concept

The proof of concept serves to set up the first building block for our grammatical

evolution. The grammar describes a simple request defined in the “Version 1” section

of Figure 5-2. The options for “Action” are chosen from a set of pre-selected strings.

The application server will return 200 OK to only one of the strings. The experiment’s

objective for GE is to return an instruction that generates a request with a successful

response. Table 6.3 shows the actions the GE can choose from along with the expected

response from the application server. Table 6.4 shows the reward system for this setup.

Table 6.2: Application Server Action Definition

Table 6.3: Actions and Results

Action
Name Args Status Code
ExpectedOperation [] 200
UnkownOperation [] 404
ForbiddenOperation [] 403

Table 6.4: Result Payoff

Name (Code) Value
OK (200) 10
Other -1

With a simple grammar and a simple fitness function GE can return a desired

HTTP request. Figure 6-1 shows a successful outcome after 1 generation, as expected

given that the 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑠𝑖𝑧𝑒 > 𝑠𝑒𝑎𝑟𝑐ℎ 𝑠𝑝𝑎𝑐𝑒. The next experiment introduces a

function that takes arguments. The function has high algorithmic complexity and

makes the application server vulnerable to DoS attacks. The experiment also intro-

duces the notion of strategy to the GE algorithm (see chapter 5.4).

58

Figure 6-1: Proof of Concept search with a population size of 4 and 10 generartions.
The best solution is a request with “ExpectedOperation”. The fitness is 8.2

6.2 Denial of Service: Exploiting an expensive op-

eration

In this Experiment, the client runs a function in the application server that was

designed with a high algorithmic complexity. The function has runtime duraction

𝑡(𝑚𝑠) = 100𝑥 + 10𝑦2 where 𝑥 is the length of the string argument and 𝑦 is the

number of non alphanumerical characters in the string. The name of the operation is

“ExpensiveOperation” and is described in Chapter 5.1.2. We set the HTTP Request’s

Action to “ExpensiveOperation” and generate string arguments of length between

1 to 10. A string is defined as a combination of 𝑛𝑢𝑝𝑝𝑝𝑒𝑟 = 26 uppercase letters,

𝑛𝑙𝑜𝑤𝑒𝑟 = 26 lowercase letters, 𝑛𝑑𝑖𝑔𝑖𝑡𝑠 = 10 and 𝑛𝑠𝑝𝑒𝑐𝑖𝑎𝑙 = 21 An argument can have

𝑛 = (𝑛𝑢𝑝𝑝𝑝𝑒𝑟+𝑛𝑙𝑜𝑤𝑒𝑟+𝑛𝑑𝑖𝑔𝑖𝑡𝑠+𝑛𝑠𝑝𝑒𝑐𝑖𝑎𝑙)
10 = 15×1018 possible values (see chapter 5.5).

If an operation takes more than 10𝑠 to execute, the server crashes and the denial of

service attack is executed successfully. It would take a string of exactly 10 special

characters to crash the service.

59

(a) Random search (b) GE with no strategy

(c) GE with strategy (d) Population size of 20 and 4 generations

Figure 6-2: Denial of Service attack with Randon Search and Grammatical Evolution.
(a) Random search has a mean fitness of 32.715. The strings are generated uniformly at
random. (b) GE with a population size of 4 and 20 generations. No strategy is applied. (c)
GE with a population size of 4 and 20 generations. A strategy of doubling the argument
size if a request is significantly slower than another is applied. (d) GE with a population
size of 20 and 4 generations. Strategy from (c) is applied

6.2.1 Random Search

Disruption happens if the string argument has 10 special characters. A random

search has a
𝑛10
𝑠𝑝𝑒𝑐𝑖𝑎𝑙

𝑛
= 2110

(15×1018)
= 0.0001% chance to generate a string with 10 special

characters. Figure 6-2a shows a low flat curve for random search. The mean fitness

is 32.

6.2.2 Grammatical Evolution

We first run grammatical evolution as is, with population size of 4 and iterating

through 20 generations. The best individual is a request with argument “#% ! {))}”

60

Table 6.5: Genetic Algorithm with a cautious attack and population size 20, 20
generations 8 iterations to execute strategy - (Figure 6-2)

Parameters Request Results
Strategy Pop gen Name Args tries Fitnesss
No 4 20 “ExpensiveOperation” [“#% ! {))}”] 64 1021.78
Yes 4 20 “ExpensiveOperation” [“))”] 24 1180.60
Yes 20 4 “ExpensiveOperation” [“{!$+=”] 40 2255.36

and is created after 16 generations, or 64 total requests. Applying a strategy to double

the argument size to a request that is significantly slower than expected hastens the

process and a champion is generated after 6 generations, or 24 total requests. The

champion has argument “))” that would have needed to be multiplied 3 times to

generate a string with at least 10 special characters. If we increase the population

size from 4 to 20 and reduce the number of generations from 20 to 4, the GE has an

even greater performance. It is able to generate an individual that will disrupt the

service with less transformations, resulting in a fitness of 2255 - twice as high as a

GE with lower population size. The champion is a request with argument “{!$+=”.

Performing 1 transformation to this request is enough to disrupt the service. A higher

population gives the GE more room to explore the broad search space of strings to the

kind that will disrupt the server. A strategy exploits what makes the string disruptive

and amplifies the effect of disruption. Table 6.6 summarizes how exploiting a DoS

Vulnerability is better achieved with a GE than with random search. Furthermore, a

GE with a strategy and a big enough population to explore provides an even greater

outcome.

Table 6.6: Summary of results for Denial of Service experiment

Method Mission
Name pop gen Attacks Best Fitness Note
Random Search N/A N/A “ExpensiveOperation” 37
GE with no strategy 4 20 “ExpensiveOperation” 1021.78 After 64 requests
GE with strategy 4 20 “ExpensiveOperation” 1180.60 After 24 requests
GE with strategy 20 4 “ExpensiveOperation” 2255.36 After 40 requests

61

6.3 Increasing the breadth of attacks and strate-

gies

Up until now, the attacker was given a vulnerable endpoint and the goal was to ex-

ploit it by finding the argument that causes the service to break. In this experiment,

we expand the scope of what an attack is to include HTTP Request Smuggling (See

3.4.3. HTTP Request Smuggling will allow the attacker to attempt cross-scripting

through infiltration and information discolusre attacks through exfiltration. During

infiltration the attacker will attempt to hijack the server and run their workload, a

success condition is if the returned response contains the predefined payload : “HI-

JACKED PAYLOAD”. Exfiltration follows the same heuristic but with a different

approach. If the response to a request contains a HTTP Status Code of “403 - For-

biddenOperation” during the reconnaissance phase of the killchain (see chapter 5.4

for details), the attacker will attempt HTTP Request Smuggling to gain an elevation

of priviledge by having the Edge server call the restricted method on behalf of the at-

tacker. An exfiltration attack is successful if the application server response contains

the predefined payload : “SECRET PAYLOAD”.

The grammar used for this experiment builds on the previous version of the gram-

mar that defined Denial of Service attack and introduces the attacks above. It also

introduces the concept of “missions”. The missions parameter carries information on

the attacker’s goal. Fitness function uses the server’s response to determine if a goal

was achieved. Actions in the new grammar encapsulate the notion of a REST API

5.1.2 as well as the definition of a script used for a cross-script attack. The mission

types will infrom the strategy and has no bearing on the requests generated by the

grammar. The GE algorithm will seed the requests and “strategy” will execute the

killchain described in chapter 5.4.

This experiment also explores two payoff models. The first payoff structure models

a stealthy attacker. It favors remaining undetected by penalizing failed attacks and

rewarding finding disuptive attacks as quickly as possibe. The second payoff struc-

ture models a bold strategy that favors persistance in an attacker and no penalty is

62

(a) Stealthy strategy on an application
server with all vulnerabilities

(b) Stealthy strategy on an application
server vulnerable to DoS only

(c) Persistant strategy on an application
server with all vulnerabilities

(d) Persistant strategy on an application
server vulnerable to DoS only

Figure 6-3: Genetic algorithm with a population size of 20 and a generation size of 40. The
algorithm searches through HTTP Request smuggling and DoS vulnerabilities in a given
application server endpoint. The search space has size of 𝑛 = 1.6× 1021

assigned to failures. This strategy can be seen as disadvantegous against a defense

strategy that blacklists suspicious traffic.

6.3.1 The stealthy attacker strategy

In the first experiment of this setup (Figure 6-3a), the engagement environment is

vulnerable to all attacks. In the 1st generation, the algorithm discovered the exfiltrate

attack for a fitness of 716. The fitness assigns a score of 1000 for having successfully

run the attack, however since only 1 request in the killchain accomplished the attack,

the rest of the requests suffer a penalty. In the 6th generation, the algorithm discovers

that it can both infiltrate and exfiltrate the target for a payoff of 1403. In the 36th

63

generatiom, the algorithm discovers it an achieve a better outcome by running an

infiltration and disruption campaign for a fitness of 1627.74. This is because the

fitness function rewards creating latency so although the killchain is the same for

both [“infiltrate”, “exfiltrate”] and [“infiltrate, “disrupt”] campaign, the requests in

the killchain that aim to disrupt the DoS vulnerability create high latency on the

server. The exfiltration requests don’t have a comparable effect. Since we chose to

assign the same weight for all attacks, the algorithm will favor the attack that creates

latency along the way. Denial of service is harder to achieve than infiltration and

exfiltration in our engagement environment. It took 36 generations for the algorithm

to successful disrupt the server.

In the second experiment using this setup (Figure 6-3b), the engagement envi-

ronment is only vulnerable to the DoS attack. Until the 16th generation the fitness

is negative as the algorithm struggles to find an attack. In the 16th generation, the

algorithm finally creates an individual that has a mission to disrupt, with an “Ex-

pensiveOperation” and an argument with 2 special characters. Running this request

through the killchain will lead to the creation of an attack that takes 3 transforma-

tions on the string argument to succeed. Recall that each transformation just doubles

the string length. The algorithm progressively creates strings with more and more

special characters, requiring less transformations to succesfully disrupt the server. In

the 37th generation, the algorithm creates an request with fitness 3674.10. It has 8

special characters and requires no additional transformation to disrupt the server.

6.3.2 The persistant attacker strategy

In the first experiment of this setup (Figure 6-3c), in the 1st generation, the engage-

ment environment discovers the infiltrate attack for a fitness of 1155.18. It does so by

attempting all missions and is not penalized for failing to disrupt or exfiltrate, even

though the missions were part of the campaign. In the 2nd generation, the approach

to try all missions is kept in the algorithm’s DNA and so it discovers it can also

trigger a sussful attack by running a campaign of [“disrupt”, “exfiltrate”, “infiltrate”]

by running the “ForbiddenOperation” function. It succesfully completes 2 out of the

64

the 3 missions and is rewarded 2106.06 points. The algorithm is not able to make

any meaningul gain from there since with the current reward system, looking for the

Denial of Service attack is like finding a needle in haystack and all the hay is made of

gold. The agorithm is not incentivized to explore more since it doesn’t get much gain

from it, nor does it get penalized for making requests that don’t amount to anything.

In the second experiment using this setup (Figure 6-3d), the engagement envi-

ronment is only vulnerable to the DoS attack. Until the 11th generation, the fitness

is close to 0 as the algorithm struggles to run a succesful campaign. However, we

observe in 5th generation, the algorithm is starting to discover the individuals with

ExpensiveOperations in its population. It’s not until the 12th generation that the

GE starts to focus on Denial of Service of attack. In the 27th generation, it creates

an request capable of disrupting the service without any additional transformation.

Table 6.7: Distribution of operations run for an attacker with a persistant strategy
and an application server vulnerable to DoS only.

Generation 1 5 10 15 20 25 30 35 40
ExpensiveOperation Count 5 10 6 6 9 13 18 17 16
ExpectedOperation Count 2 3 4 0 1 2 1 2 2
ForbiddenOperation Count 2 2 5 0 2 0 0 0 0
UnknownOperation Count 11 5 5 14 8 5 1 1 2

65

Table 6.8: Summaryf of Experiments: Genetic Algorithm with a cautious attack and
population size 20, 40 generations 4 iterations to execute strategy - (Figure 6-3)

Parameters Mission Results
Vulnerability strategy Name Action Args Fitness
all stealthy [“disrupt”, “infil-

trate”]
“ExpensiveOperation” 2 special characters 1627.74

DoS only stealthy [“disrupt”] “ExpensiveOperation” 8 special characters 3674.10
all persistant [“exfiltrate”, “infil-

trate”]
“ForbiddenOperation” None 2666.30

DoS only persistant [“disrupt”,“exfiltrate”,
“infiltrate”]

“ExpensiveOperation” 9 special characters 4159.10

6.4 Rescoping the grammar from HTTP Requests

to attack missions

Up until this point, the GE generated a population of requests with actions and

mission objectives. In this experiment, the GE generates mission contexts. Requests

now take a supporting role for the mission. The context of the grammar is built

around the missions objectives.

66

(a) Cautious strategy on an application
server with all vulnerabilities

(b) Cautious strategy on an application
server vulnerable to DoS only

(c) Bold strategy on an application server
with all vulnerabilities

(d) Bold strategy on an application server
vulnerable to DoS only

Figure 6-4: Genetic algorithm with a population size of 20 and a generation size of 40. The
algorithm searches through HTTP Request smuggling and DoS vulnerabilities in a given
application server endpoint. The search space has a size of 𝑛 = 1.6× 1021

67

We do not observe any meaningul differences between both strategies with this

grammar. By searching for missions instead of requests and by refining how we

formualate requests around the mission, we are shifting away from an unrestricted

search in the space of API calls to an unrestricted search in much narrower space of

mission definitions. To understand this better, take the difference between an HTTP

Request Summing attack and a Denial of Service attack. Denial of Service exploits

a functions arguments, while HTTP Request Smuggling sneaks a function as it is

defined. In previous experiment, the syntax for both attacks were the same. The

GE generated a request with arguments and assigned missions to that request. Even

though the algorithm did not need to explore arguments for an HTTP Smuggling

Attack, it did so anyways because the search was unrestricted. In this experiment,

actions for both HTTP Request Smuggling and Denial Of Service are well defined.

The GE will not attempt to generate requests with arguments when it doesn’t need to.

This results in a better outcome for the stealthy strategy since much fewer requests

are penalized overall. Table 6.9 shows the mission results for the campaign against an

an engagement environment vulnerable to all attacks. Table 6.10 shows the results

for a similar campaign but with a persistant strategy. Table 6.11 shows the mission

results for the campaign against an an engagement environment vulnerable to DoS

attacks only. Table 6.12 shows the results for a similar campaign but with a persistant

strategy. As we can see, both strategies have similar outcomes.

68

Table 6.9: Mission results for a stealthy strategy. The application is vulnerable to all
attacks - Best Solution (Figure 6-4a)

Best Response
Number of missions 1 Fitness 6113.06

Mission List
id Method Action Method Option
disrupt denial of service ExpensiveOperation(”@]]”) Transform:𝑎𝑟𝑔 = 24𝑎𝑟𝑔
exfiltrate http smuggling “ForbiddenOperation” Decoy:”ExpectedOperation”
infiltrate http smuggling “UnknownOperation” Decoy:”ExpensiveOperation”

Table 6.10: Mission results for a persistant strategy. The application is vulnerable to
all attacks - Best Solution (Figure 6-4c)

Best Response
Number of missions 3 Fitness 6180.86

Mission List
id Method Action Method Option
disrupt denial of service ExpensiveOperation(”%@5]”) Transform:𝑎𝑟𝑔 = 29𝑎𝑟𝑔
exfiltrate http smuggling “ForbiddenOperation” Decoy:”ExpectedOperation”
infiltrate http smuggling “UnknownOperation” Decoy:”ExpensiveOperation”

Table 6.11: Mission results for a stealthy strategy. The application is vulnerable to
DoS attacks only - Best Solution (Figure 6-4b)

Best Response
Number of missions 2 Fitness 4144.90

Mission List
id Method Action Method Option
disrupt denial of service ExpensiveOperation(”-.]”) Transform:𝑎𝑟𝑔 = 27𝑎𝑟𝑔

Table 6.12: Mission results for a persistant strategy. The application is vulnerable to
DoS attacks only - Best Solution (Figure 6-4d)

Best Response
Number of missions 1 Fitness 4423.34

Mission List
id Method Action Method Option
disrupt denial of service ExpensiveOperation(”@]]”) Transform:𝑎𝑟𝑔 = 24𝑎𝑟𝑔

6.5 Summary of results

Section 6.1 establishes that a GE can explore HTTP requests and converge to a re-

quest with desired response. Section 6.2 demonstrates that GE performs significantly

better than random search on finding vulnerabilities in a system. Section 6.3 shows

that the GE scales as we expand the breadth of possible attacks and that applying a

strategy to the seeded attack improves how quickly the GE can generate an optimal

attack. The type of strategy will have different outcomes depending on the defense

strategy. Section 6.4 establishes a mission definition and restricts the requests that

are generated to fit the mission. The fitness of a mission-based attack is significantly

69

higher than of those without a defined mission.

70

Chapter 7

Conclusion and future work

Our results demonstrate that searching through an attack space using simple gram-

matical evolution algorithm can beat a simple static web application firewall defense.

Grammatical evolution also scales as we increase the breadth of attack and improve

our grammar to be more expressive towards mission campaigns and strategies. The

application of the heuristics developed in this research to create a dynamic defense

strategy presents its own set of challenges. For one, a defender must ensure it does

not react to legitimate traffic, and so must maintain the false positive rate low[43]. In

addition, the cost of failing for the defender is typically higher than the cost of failing

for the attacker. Web applications are also typically sensitive to performance so the

defender must strike a balance between the defense reaction time and the application

runtime.

7.1 Limitations

This research was performed at very small scale. The application and methods devel-

oped merely emulate and model real requests and strategies for adverserial engage-

ments in cybersecurity. Another limitiation lies in the runtime of each experiment.

Each expirement takes about an hour to run, making repeatablity scale computation-

ally intractable. This could be improved by parallelizing all requests from the same

generation.

71

7.2 Future Work

This experiment serves to motivate the study of dynamic engement between an attack

and the cloud WAF. The below items serve to inform areas of improvements in the

framezwork and methodologies developed.

1. The attack setup was limited to 3 types of attacks. Future experiments should

explore the effect of increasing the breadth of attacks and strategies on algo-

rithmic scalability.

2. The engagement environment in this study remained static and constant. Fu-

ture research should study the use a dynamic, GE based defense, as well as the

effects of coevolution in the attacker-defender dynamic part of this study.

3. All 3 types of attacks were weighted equally, future work can explore the effects

of favoring an attack over another.

4. The vulnerabilties in engagement environment favored a bold attack strategy

since the WAF did not punish attackers. Future experiments can explore the

dynamics of attack detection on the WAF.

5. All experiments were run on a single application server. Future experiements

could explore attacks on multiple endpoints and expoloit the weakest one.

72

Appendix A

Threat Model

Figure A-1: Threat Model Diagram

A.1 Client to Edge Request

73

Figure A-2: Theat Model Diagram for client to edge request interaction

Table A.1: An adversary can gain unauthorized access to configure resources.

Category: Elevation of Privileges
Description: An adversary can gain unauthorized access to configure resources.

The adversary can be either a disgruntled internal user, or someone
who has stolen the credentials of a resource manager.

Possible Mitigation(s): Enable fine-grained access management to Azure Subscription us-
ing RBAC.

SDL Phase: Design

Table A.2: An adversary can deny actions on Cloud Gateway due to lack of auditing.

Category: Repudiation
Description: An adversary may perform actions such as spoofing attempts,

unauthorized access etc. on Cloud gateway. It is important to
monitor these attempts so that adversary cannot deny these ac-
tions.

Possible Mitigation(s): Ensure that appropriate auditing and logging is enforced on Cloud
Gateway.

SDL Phase: Design

Table A.3: An adversary may spoof an system administrator and gain access to the
system management portal.

Category: Spoofing
Description: An adversary may spoof a system administrator and gain access to

the system management portal if the administrator’s credentials
are compromised.

Possible Mitigation(s): Enable fine-grained access management to the management portal
using RBAC. Enable Multi-Factor Authentication for the Admin-
istrators.

SDL Phase: Design

74

A.2 Web API to Database

Figure A-3: Theat Model Diagram for Web API to Database request interaction

Table A.4: An adversary can gain unauthorized access to database due to lack of
network access protection

Category: Elevation of Privileges
Description: If there is no restriction at network or host firewall level, to access

the database then anyone can attempt to connect to the database
from an unauthorized location

Possible Mitigation(s): Configure a Windows Firewall for Database Engine Access.
SDL Phase: Implementation

Table A.5: An adversary can gain unauthorized access to database due to loose
authorization rules

Category: Elevation of Privileges
Description: Database access should be configured with roles and privilege

based on least privilege and need to know principle.
Possible Mitigation(s): Ensure that least-privileged accounts are used to connect to

Database server. Implement Row Level Security RLS to prevent
tenants from accessing each others data. Sysadmin role should
only have valid necessary users .

SDL Phase: Implementation

75

Table A.6: An adversary can gain access to sensitive PII or HBI data in database

Category: Information Disclosure
Description: Additional controls like Transparent Data Encryption, Column

Level Encryption, EKM etc. provide additional protection mech-
anism to high value PII or HBI data.

Possible Mitigation(s): Use strong encryption algorithms to encrypt data in the database.
Ensure that sensitive data in database columns is encrypted. En-
sure that database-level encryption (TDE) is enabled. Ensure that
database backups are encrypted. Use SQL server EKM to protect
encryption keys. Use AlwaysEncrypted feature if encryption keys
should not be revealed to Database engine.

SDL Phase: Implementation

Table A.7: An adversary can gain access to sensitive data by performing SQL injection

Category: Information Disclosure
Description: SQL injection is an attack in which malicious code is inserted

into strings that are later passed to an instance of SQL Server
for parsing and execution. The primary form of SQL injection
consists of direct insertion of code into user-input variables that
are concatenated with SQL commands and executed. A less direct
attack injects malicious code into strings that are destined for
storage in a table or as metadata. When the stored strings are
subsequently concatenated into a dynamic SQL command, the
malicious code is executed.

Possible Mitigation(s): Ensure that login auditing is enabled on SQL Server. Enable
Threat detection on Azure SQL database. Do not use dynamic
queries in stored procedures.

SDL Phase: Implementation

Table A.8: An adversary can deny actions on database due to lack of auditing

Category: Repudiation
Description: Proper logging of all security events and user actions builds trace-

ability in a system and denies any possible repudiation issues. In
the absence of proper auditing and logging controls, it would be-
come impossible to implement any accountability in a system.

Possible Mitigation(s): Ensure that login auditing is enabled on SQL Server.
SDL Phase: Implementation

Table A.9: An adversary can tamper critical database securables and deny the action

Category: Tampering
Description: An adversary can tamper critical database securables and deny

the action
Possible Mitigation(s): Add digital signature to critical database securables.
SDL Phase: Design

76

Table A.10: An adversary may leverage the lack of monitoring systems and trigger
anomalous traffic to database

Category: Tampering
Description: An adversary may leverage the lack of intrusion detection and

prevention of anomalous database activities and trigger anomalous
traffic to database

Possible Mitigation(s): Enable Threat detection on SQL database.
SDL Phase: Design

77

A.3 Edge to Web API Request

Figure A-4: Theat Model Diagram for Edge to Web API request interaction

Table A.11: An adversary may gain unauthorized access to Web API due to poor
access control checks

Category: Elevation of Privileges
Description: An adversary may gain unauthorized access to Web API due to

poor access control checks
Possible Mitigation(s): Implement proper authorization mechanism in the Web API Im-

plementation.
SDL Phase: Implementation

Table A.12: An adversary can gain access to sensitive information from an API
through error messages

Category: Information Disclosure
Description: An adversary can gain access to sensitive data such as the follow-

ing, through verbose error messages - Server names - Connection
strings - Usernames - Passwords - SQL procedures - Details of
dynamic SQL failures - Stack trace and lines of code - Variables
stored in memory - Drive and folder locations - Application install
points - Host configuration settings - Other internal application
details

Possible Mitigation(s): Ensure that proper exception handling is done in the Web API
Implementation.

SDL Phase: Implementation

78

Table A.13: An adversary can gain access to sensitive data by sniffing traffic to Web
API

Category: Information Disclosure
Description: An adversary can gain access to sensitive data by sniffing traffic

to Web API
Possible Mitigation(s): Force all traffic to Web APIs over HTTPS connection.
SDL Phase: Implementation

Table A.14: An adversary can gain access to sensitive data stored in Web API’s config
files

Category: Information Disclosure
Description: An adversary can gain access to the config files. and if sensitive

data is stored in it, it would be compromised.
Possible Mitigation(s): Encrypt sections of Web API’s configuration files that contain

sensitive data.
SDL Phase: Implementation

Table A.15: Attacker can deny a malicious act on an API leading to repudiation
issues

Category: Repudiation
Description: Attacker can deny a malicious act on an API leading to repudiation

issues
Possible Mitigation(s): Ensure that auditing and logging is enforced on Web API.
SDL Phase: Design

Table A.16: An adversary may spoof Cloud Edge Gateway and gain access to Web
API

Category: Spoofing
Description: If proper authentication is not in place, an adversary can spoof a

source process or external entity and gain unauthorized access to
the Web Application

Possible Mitigation(s): Ensure that standard authentication techniques are used to secure
Web APIs.

SDL Phase: Design

Table A.17: An adversary may inject malicious inputs into an API and affect down-
stream processes

Category: Tampering
Description: An adversary may inject malicious inputs into an API and affect

downstream processes
Possible Mitigation(s): Ensure that model validation is done on Web API methods. Im-

plement input validation on all string type parameters accepted
by Web API methods.

SDL Phase: Design

79

Table A.18: An adversary can gain access to sensitive data by performing SQL injec-
tion through Web API

Category: Tampering
Description: SQL injection is an attack in which malicious code is inserted

into strings that are later passed to an instance of SQL Server
for parsing and execution. The primary form of SQL injection
consists of direct insertion of code into user-input variables that
are concatenated with SQL commands and executed. A less direct
attack injects malicious code into strings that are destined for
storage in a table or as metadata. When the stored strings are
subsequently concatenated into a dynamic SQL command, the
malicious code is executed.

Possible Mitigation(s): Ensure that type-safe parameters are used in Web API for data
access.

SDL Phase: Implementation

80

A.4 Web API to Database Response

Figure A-5: Theat Model Diagram for Web API to Database response interaction

Table A.19: An adversary may gain unauthorized access to Web API due to poor
access control checks

Category: Elevation of Privileges
Description: An adversary may gain unauthorized access to Web API due to

poor access control checks
Possible Mitigation(s): Implement proper authorization mechanism in the Web API Im-

plementation.
SDL Phase: Implementation

81

Table A.20: An adversary can gain access to sensitive information from an API
through error messages

Category: Information Disclosure
Description: An adversary can gain access to sensitive data such as the follow-

ing, through verbose error messages - Server names - Connection
strings - Usernames - Passwords - SQL procedures - Details of
dynamic SQL failures - Stack trace and lines of code - Variables
stored in memory - Drive and folder locations - Application install
points - Host configuration settings - Other internal application
details

Possible Mitigation(s): Ensure that proper exception handling is done in the Web API
Implementation.

SDL Phase: Implementation

Table A.21: An adversary can gain access to sensitive data by sniffing traffic to Web
API

Category: Information Disclosure
Description: An adversary can gain access to sensitive data by sniffing traffic

to Web API
Possible Mitigation(s): Force all traffic to Web APIs over HTTPS connection.
SDL Phase: Implementation

Table A.22: An adversary can gain access to sensitive data stored in Web API’s config
files

Category: Information Disclosure
Description: An adversary can gain access to the config files. and if sensitive

data is stored in it, it would be compromised.
Possible Mitigation(s): Encrypt sections of Web API’s configuration files that contain

sensitive data.
SDL Phase: Implementation

Table A.23: Attacker can deny a malicious act on an API leading to repudiation
issues

Category: Repudiation
Description: Attacker can deny a malicious act on an API leading to repudiation

issues
Possible Mitigation(s): Ensure that auditing and logging is enforced on Web API.
SDL Phase: Design

82

Table A.24: An adversary may spoof Database and gain access to Web API

Category: Spoofing
Description: If proper authentication is not in place, an adversary can spoof a

source process or external entity and gain unauthorized access to
the Web Application

Possible Mitigation(s): Ensure that standard authentication techniques are used to secure
Web APIs.

SDL Phase: Design

Table A.25: An adversary may inject malicious inputs into an API and affect down-
stream processes

Category: Tampering
Description: An adversary may inject malicious inputs into an API and affect

downstream processes
Possible Mitigation(s): Ensure that model validation is done on Web API methods. Im-

plement input validation on all string type parameters accepted
by Web API methods.

SDL Phase: Design

Table A.26: An adversary can gain access to sensitive data by performing SQL injec-
tion through Web API

Category: Tampering
Description: SQL injection is an attack in which malicious code is inserted

into strings that are later passed to an instance of SQL Server
for parsing and execution. The primary form of SQL injection
consists of direct insertion of code into user-input variables that
are concatenated with SQL commands and executed. A less direct
attack injects malicious code into strings that are destined for
storage in a table or as metadata. When the stored strings are
subsequently concatenated into a dynamic SQL command, the
malicious code is executed.

Possible Mitigation(s): Ensure that type-safe parameters are used in Web API for data
access.

SDL Phase: Implementation

83

A.5 Client to Edge Response

Figure A-6: Theat Model Diagram for Client to Edge response interaction

Table A.27: An adversary may spoof an system administrator and gain access to the
system management portal.

Category: Spoofing
Description: An adversary may spoof a system administrator and gain access to

the system management portal if the administrator’s credentials
are compromised.

Possible Mitigation(s): Enable fine-grained access management to the management portal
using RBAC. Enable Multi-Factor Authentication for the Admin-
istrators.

SDL Phase: Design

Table A.28: An adversary can gain unauthorized access to configure resources.

Category: Elevation of Privileges
Description: An adversary can gain unauthorized access to configure resources.

The adversary can be either a disgruntled internal user, or someone
who has stolen the credentials of a resource manager.

Possible Mitigation(s): Enable fine-grained access management to Azure Subscription us-
ing RBAC.

SDL Phase: Design

84

Appendix B

Listings

Listing B.1: Definition of an HTTP request smuggling OWASP Core Rule Set Rule

#

−=[HTTP Request Smuggling]=−

#

[Rule Logic]

This r u l e l ooks f o r a CR/LF charac t e r in combination with a HTTP / WEBDAV method name .

This would po int to an attempt to i n j e c t a 2nd reque s t i n to the request , thus bypass ing

t e s t s c a r r i e d out on the primary reque s t .

#

[Re fe rences]

http :// p r o j e c t s . webappsec . org /HTTP−Request−Smuggling

#

SecRule ARGS NAMES |ARGS|XML:/* ”@rx [∖n∖ r]+(? : get | post | head | opt ions | connect | put | de l e t e | t r a c e | ∖

t rack | patch | propf ind | propatch |mkcol | copy | ∖

move | l o ck | unlock)∖ s+[^∖ s]+(? :∖ s+http | [∖ r ∖n]) ” ∖

” id :921110 ,∖

phase : 2 ,∖

block ,∖

capture ,∖

t : none , t : urlDecodeUni , t : htmlEntityDecode , t : lowercase ,∖

msg : ’HTTP Request Smuggling Attack ’ ,∖

l ogdata : ’ Matched Data : %{TX.0} found with in %{MATCHEDVARNAME} : %{MATCHEDVAR} ’ ,∖

tag : ’ app l i c a t i on−multi ’ ,∖

tag : ’ language−multi ’ ,∖

tag : ’ platform−multi ’ ,∖

tag : ’ attack−protoco l ’ ,∖

tag : ’ paranoia−l e v e l /1 ’ ,∖

tag : ’OWASP CRS’ ,∖

tag : ’OWASPCRS/WEBATTACK/REQUEST SMUGGLING’ ,∖

85

c t l : auditLogParts=+E,∖

ver : ’OWASPCRS/3 . 2 . 0 ’ ,∖

s e v e r i t y : ’CRITICAL’ ,∖

s e tva r : ’ tx . h t t p v i o l a t i o n s c o r e=+%{tx . c r i t i c a l a n oma l y s c o r e } ’ ,∖

s e tva r : ’ tx . anomaly score p l1=+%{tx . c r i t i c a l a n oma l y s c o r e } ’”

Listing B.2: Grammar definition of a request query expressed in Backus–Naur form

(BNF)

<request> : := {”miss ion ” : <miss ion >, ” a c t i on s ” : <act ions>}

<miss ion> : := [” d i s rupt ”] | [” e x f i l t r a t e ”] | [” i n f i l t r a t e ”] |

[” d i s rupt ” , ” e x f i l t r a t e ”] | [” d i s rup t ” , ” i n f i l t r a t e ”] |

[” e x f i l t r a t e ” , ” i n f i l t r a t e ”] |

[” d i s rupt ” , ” e x f i l t r a t e ” , ” i n f i l t r a t e ”]

<act ions> : := <a l l owed ac t i on> | < i l l e g a l a c t i o n >

<a l l owed ac t i on> : := {”Type” : <type>, ”Name” : <api name>, ”Args” : <args> }

< i l l e g a l a c t i o n > : := { ”Name” : <i l l e ga l name >, ”Args” : <args> }

<type> : := ” post ” | ” get ”

<any name> : := <api name> | <i l l e g a l name>

<api name> : := ”ExpectedOperation” | ”ExpensiveOperation ” | ”ForbiddenOperation ”

<i l l e ga l name> : := ”UnknownOperation”

<args> : := [] | [< a r g l i s t >]

<a r g l i s t > : := <arg>

<arg> : := ”<s t r i ng >” | <number>

<s t r i ng> : := <alpha num> | <s p e c i a l> | <alpha num><s p e c i a l> |

<alpha num><s t r i ng> | <s p e c i a l><s t r i ng>

<alpha num> : := <alpha> | <d i g i t> | <alpha><d i g i t> | <alpha><alpha num> |

<d i g i t><alpha num>

<alpha> : := A | B | C | . . . | X | Y | Z | a | b | c | . . . | x | y | z

<number> : := <d i g i t> | <d i g i t><number>

<d i g i t> : := 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

<s p e c i a l> : := ! | @ | # | $ | % | ^ | & | * | (|) | | − | = |

+ | . | , | { | } | ∖∖ | / [|]

86

Listing B.3: Grammar definition of a mission expressed in Backus–Naur form (BNF)

<miss ions> : := [<dis rupt >] | [< e x f i l t r a t e >] | [< i n f i l t r a t e >] | [<dis rupt >, <e x f i l t r a t e >] |

[<dis rupt >, < i n f i l t r a t e >] | [< e x f i l t r a t e >, < i n f i l t r a t e >] |

[<dis rupt >, <e x f i l t r a t e >, < i n f i l t r a t e >]

<dis rupt> : := {” id ” : ” d i s rup t ” , ”method” : <d e n i a l o f s e r v i c e >, ” ac t i on ” : <ap i a c t i on >}

<e x f i l t r a t e > : := {” id ” : ” e x f i l t r a t e ” , ”method ” : <http smuggl ing >, ” ac t i on ” : <ap i a c t i on >,

” expected payload ” : ”SECRETPAYLOAD”}

< i n f i l t r a t e > : := {” id ” : ” i n f i l t r a t e ” , ”method ” : <http smuggl ing >, ” ac t i on ” : <x s c r i p t a c t i o n >,

” expected payload ” : ”HIJACKED PAYLOAD”}

<d e n i a l o f s e r v i c e > : := {” id ” : ” d e n i a l o f s e r v i c e ” ,

” arg t rans fo rm ” : ”lambda x : x*(i n t) (math . pow(2 ,< d i g i t >))”}

<http smuggl ing> : := {” id ” : ” http smuggl ing ” , ” decoy ac t i on ” : <ap i a c t i on >}

<ap i a c t i on> : := {”Type” : ” get ” , ”name” : ”ExpectedOperation ” , ”Args” : [] } |

{”Type” : ” post ” , ”name” : ”ExpensiveOperation ” , ”Args” : [<arg>]} |

{”Type” : ” post ” , ”name” : ”ForbiddenOperation ” , ”Args” : [] }

<x s c r i p t a c t i o n> : := {”Type” : ” post ” , ”name” : ”UnknownOperation ” , ”Args” : [] }

<args> : := [] | [< a r g l i s t >]

<a r g l i s t > : := <arg>

<arg> : := ”<s t r i ng >” | <number>

<s t r i ng> : := <alpha num> | <s p e c i a l> | <alpha num><s p e c i a l> |

<alpha num><s t r i ng> | <s p e c i a l><s t r i ng>

<alpha num> : := <alpha> | <d i g i t> | <alpha><d i g i t> | <alpha><alpha num> |

<d i g i t><alpha num>

<alpha> : := A | B | C | . . . | X | Y | Z | a | b | c | . . . | x | y | z

<number> : := <d i g i t> | <d i g i t><number>

<d i g i t> : := 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

<s p e c i a l> : := ! | @ | # | $ | % | ^ | & | * | (|) | | − | = |

+ | . | , | { | } | ∖∖ | / [|]

87

THIS PAGE INTENTIONALLY LEFT BLANK

88

Bibliography

[1] Stephen Watts and Muhammad Raza. SaaS vs PaaS vs IaaS: What’s The Dif-
ference and How To Choose. June 2019.

[2] CloudFlare. What is BGP? BGP routing explained. November 2018.

[3] Cybersecurity Insiders. Cloud security report. March 2019. https://www.isc2.
org/-/media/ISC2/Landing-Pages/2019-Cloud-Security-Report-ISC2.

ashx.

[4] Jennifer Adams and Andras Cser. Forrester analytics: Cloud security solutions
forecast, 2018 to 2023. April 2019.

[5] Jay Heiser. Clouds are secure: Are you using them securely? September 2015.
Gartner Report.

[6] John Maddison. The hidden challenge of the cloud security skills gap. July 2019.

[7] Josh Fruhlinger. What is a cyber attack? February 2020.

[8] Kevin Rock, George Hughey, Xiao Qiang, and Dave Levin. Geneva: Evolving
Censorship Evasion Strategies. November 2019.

[9] Victor R. Kebande and Hein. S. Venter. A cognitive approach for botnet detec-
tion using Artificial Immune System in the cloud. October 2014.

[10] U. Aickelin, D. Dasgupta, and F. Gu. Artificial Immune Systems. 2014.

[11] National Institute of Standars and Technology. NIST Cloud Computing Program.
U.S. Department of Commerce, November 2010.

[12] Frank D. Rosa, Mary J. Turner, Deepak Mohan, Larry Carvalho, David Tap-
per, William Lee, Adelaide O’Brien, and Richard L. Villars. IDC Futurescape:
Worldwide Cloud 2020 Predictions. October 2019.

[13] Floyd Piedad and Michael Hawkins. High availability design, techniques and
processes. Prentice Hall, 2001.

[14] Cesare Pautasso, Olaf Zimmermann, and Frank Leymann. Restful web services
vs. big’web services: making the right architectural decision. Proceedings of the
17th international conference on World Wide Web. ACM, 2008.

89

https://www.isc2.org/-/media/ISC2/Landing-Pages/2019-Cloud-Security-Report-ISC2.ashx
https://www.isc2.org/-/media/ISC2/Landing-Pages/2019-Cloud-Security-Report-ISC2.ashx
https://www.isc2.org/-/media/ISC2/Landing-Pages/2019-Cloud-Security-Report-ISC2.ashx

[15] Biharck Muniz Araujo. Hands-On RESTful Web Services with TypeScript 3,
section 3, pages 60–85. RESTful Web Services. Packt Publishing, March 2019.

[16] Rapid API. Getting started with rapid API.

[17] Cisco. BGP Best Path Selection Algorithm. September 2016.

[18] Li Long, Ma XiaoZhen, and Huang Yulan. CDN Cloud: A novel scheme for
combining CDN and Cloud Computing. August 2013.

[19] Trustwave Global. 2020 trustwave global security report. April 2020.

[20] Christian Folini, Walter Hop, and Chaim Sanders. Owasp modsecurity core rule
set v3.2. https://github.com/SpiderLabs/owasp-modsecurity-crs/tree/

v3.3/dev/rules, September 2019.

[21] Christian Folini and Ivan Ristic. ModSecurity Handbook. Feisty Duck, second
edition, July 2017.

[22] Amazon AWS. Managed rules for aws web application firewall. https:

//aws.amazon.com/marketplace/solutions/security/waf-managed-rules,
September 2015.

[23] Microsoft Azure. What is azure web application firewall? https://docs.

microsoft.com/en-us/azure/web-application-firewall/overview, August
2019.

[24] Google Cloud. Understanding google cloud armor’s new waf capabili-
ties. https://cloud.google.com/blog/products/identity-security/

understanding-google-cloud-armors-new-waf-capabilities, November
2019.

[25] David A. Wheeler. Secure Programming, chapter 2.4. 2015.

[26] J.W Backus, F.L. Bauer, J.Green, C. Katz, J. McCarthy, P. Naur, A.J. Perlis,
H. Rutishauser, K. Samelson, B. Vauquois, and J.H. Wegstein. Revised report
on the algorithmic language ALGOL 60. Communications of the ACM, January
1963.

[27] Michael O’Neill and Conor Ryan. Grammatical evolution, volume 5 of IEEE
Transactions on Evolutionary Computation, pages 349–358. IEEE, August 2001.

[28] Una-May O’Reilley, Jamal Toutouh, Marcos Pertierra, Daniel Prado Sanchez,
Dennis Garcia, Anthony Erb Lugo, Jonathan Kelly, and Erik Hemberg. Adver-
sarial Genetic Programming for Cyber Security: A Rising Application Domain
Where GP Matters. Genetic Programming and Evolvable Machines. Springer,
2020.

[29] Micrsoft. Microsoft threat modeling tool. https://docs.microsoft.com/

en-us/azure/security/develop/threat-modeling-tool, February 2017.

90

https://github.com/SpiderLabs/owasp-modsecurity-crs/tree/v3.3/dev/rules
https://github.com/SpiderLabs/owasp-modsecurity-crs/tree/v3.3/dev/rules
https://aws.amazon.com/marketplace/solutions/security/waf-managed-rules
https://aws.amazon.com/marketplace/solutions/security/waf-managed-rules
https://docs.microsoft.com/en-us/azure/web-application-firewall/overview
https://docs.microsoft.com/en-us/azure/web-application-firewall/overview
https://cloud.google.com/blog/products/identity-security/understanding-google-cloud-armors-new-waf-capabilities
https://cloud.google.com/blog/products/identity-security/understanding-google-cloud-armors-new-waf-capabilities
https://docs.microsoft.com/en-us/azure/security/develop/threat-modeling-tool
https://docs.microsoft.com/en-us/azure/security/develop/threat-modeling-tool

[30] Li Jiang, , Hao Chen, and Fei Deng. A security evaluation method based on
STRIDE model for web service. May 2010.

[31] Marget Rouse. Advanced persistent threat (APT). https://searchsecurity.
techtarget.com/definition/advanced-persistent-threat-APT, November
2010.

[32] Liviu Arsene. The Anatomy of Advanced Persistent Threats.
https://www.darkreading.com/partner-perspectives/bitdefender/

the-anatomy-of-advanced-persistent-threats/a/d-id/1319525, March
2015.

[33] U.S. Senate-Committee on Commerce Science and Transportation. A ”kill chain”
analysis of the 2013 target data breach. March 2014.

[34] James Forshaw. Attacking Network Protocols, chapter 9. No Startch Press,
August 2017.

[35] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee. Hypertext transfer protocol. December 2011.

[36] Robert Auger. Http request smuggling. December 2009.

[37] Equifax. Equifax Releases Details on Cybersecurity Inci-
dent. https://www.equifaxsecurity2017.com/2017/09/15/

equifax-releases-details-cybersecurity-incident-announces-personnel-changes/,
2017.

[38] MITRE. CVE-2017-5638 Detail. U.S. Department of Commerce, March 2017.

[39] Mathew J. Schwartz. Equifax’s Data Breach Costs Hit $1.4 Billion. May 2019.

[40] Erik Hemberg. Donkey GE. https://github.com/flexgp/donkey_ge, 2018.

[41] Eric Knorr. What serverless computing really means. July 2016.

[42] Robert Axelrod and Rumen Iliev. Timing of cyber conflict. January 2014.

[43] Ericka Chickowski. Every Hour SOCs Run, 15 Minutes Are Wasted on False
Positives. 2019.

91

https://searchsecurity.techtarget.com/definition/advanced-persistent-threat-APT
https://searchsecurity.techtarget.com/definition/advanced-persistent-threat-APT
https://www.darkreading.com/partner-perspectives/bitdefender/the-anatomy-of-advanced-persistent-threats/a/d-id/1319525
https://www.darkreading.com/partner-perspectives/bitdefender/the-anatomy-of-advanced-persistent-threats/a/d-id/1319525
https://www.equifaxsecurity2017.com/2017/09/15/equifax-releases-details-cybersecurity-incident-announces-personnel-changes/
https://www.equifaxsecurity2017.com/2017/09/15/equifax-releases-details-cybersecurity-incident-announces-personnel-changes/
https://github.com/flexgp/donkey_ge

	Introduction
	Motivation
	Research Goal
	Research Questions
	Research Approach

	Thesis Structure

	Related Work
	Literature Review
	Cloud Infrastructure
	Web Application Servers
	Edge Computing and BGP Networks

	The Web Application Firewall
	Grammatical Evolution
	Cyber attacks and Threat model
	Threat Model
	Advanced Perisitant Threat (ATP) and Cyber Killchain
	Types of attacks studied in this research

	Case study: Equifax - An HTTP Header Attack
	How it happened
	Impact and Cost
	Lessons learned

	Methodology
	Attacker-Defender system setup
	The Attacker: A client running a grammatical evolution algorithm
	The Defender: An application server behind an Edge node running a Web Application Firewall

	Methodology Limitations
	Parameters tested in Grammatical Evolution
	Attack selection and Strategy
	Search space
	Measure of fitness

	Experiments
	Proof of Concept
	Denial of Service: Exploiting an expensive operation
	Random Search
	Grammatical Evolution

	Increasing the breadth of attacks and strategies
	The stealthy attacker strategy
	The persistant attacker strategy

	Rescoping the grammar from HTTP Requests to attack missions
	Summary of results

	Conclusion and future work
	Limitations
	Future Work

	Threat Model
	Client to Edge Request
	Web API to Database
	Edge to Web API Request
	Web API to Database Response
	Client to Edge Response

	Listings

