
Unifying Public Threat Knowledge for Cyber
Hunting

by

Michal Shlapentokh-Rothman

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2020

c○ Massachusetts Institute of Technology 2020. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 18, 2020

Certified by. .
Erik Hemberg

Research Scientist
Thesis Supervisor

Certified by. .
Una-May O’Reilly

Principal Research Scientist
Thesis Supervisor

Accepted by .
Katrina LaCurts

Chair, Master of Engineering Thesis Committee

2

Unifying Public Threat Knowledge for Cyber Hunting

by

Michal Shlapentokh-Rothman

Submitted to the Department of Electrical Engineering and Computer Science
on May 18, 2020, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

A common cyber security method is to continuously monitor data flowing into a
network. However, the large amount of data that is produced from this approach
is quite overwhelming because cyber analysts are unable to review the data in a
timely matter. Because of this issue, current security guidelines recommend that
organizations pro-actively secure their systems from cyber attacks.There is a large
amount of public threat data available for organizations to use as part of their pro-
active approaches. Despite the amount of data, there is no consistent collection of such
threat data. There also has been little analysis of the public threat data to see how
comprehensive it is. Accurate public threat data combined with a security practice
such as sensor placement can create a strong active security system. We present two
systems, BRON, a tool for unifying public threat knowledge, and CHUCK (Cyber
Hunting Using Public Knowledge), a utility that determines ideal sensor placement
using BRON. BRON is a relational schema that provides easy access to different
levels of threat data as well as an analysis of the existing data. CHUCK is a system
that incorporates BRON with co-evolutionary algorithms to identify locations for
sensor placement. In this thesis, we first demonstrate how BRON can both aid in
finding specific threats for a given network and evaluate the quality of threat data.
Then we show how CHUCK, which uses BRON, can identify ideal locations in a
network for sensor placement.

Thesis Supervisor: Erik Hemberg
Title: Research Scientist

Thesis Supervisor: Una-May O’Reilly
Title: Principal Research Scientist

3

Acknowledgments

I would like to give a huge thank you to Una-May O’Reilly and Erik Hemberg for all

of their support and guidance in both my research and academic endeavors as well as

creating an exciting research environment. I would like to thank Bryn Reinstadler for

all of her work, ideas, and guidance on the BRON part of my thesis. I would like to

thank Nick Rutar from Perspecta Labs for all of his assistance and expertise on both

BRON and CHUCK. I would like to thank Nicole for all the wonderful scheduling

and administrative work that she does. I would also like to thank other members of

the ALFA Lab for their enjoyable company at lab lunches. Lastly, I would like to

thank my family for all of their time and constant support throughout my 5 years at

MIT.

This material is based upon work supported by the DARPA Advanced Research

Project Agency (DARPA) and Space and Naval Warfare Systems Center, Pacific (SSC

Pacific) under Contract No. N66001-18-C-4036.

4

Contents

1 Introduction 11

1.1 Research Questions . 13

1.2 Contributions . 14

1.3 Thesis Structure . 15

2 Related Works 17

2.1 Frameworks for storing threat information 17

2.2 Risk Assessment Tools . 18

2.3 MITE Attack Data . 19

2.4 Active Sensor Placement . 20

2.5 Using Coevolutionary Algorithms . 21

3 Unifying Threat Data-BRON 23

3.1 Methods . 23

3.1.1 Data sources and Acronyms 23

3.1.2 BRONdb . 25

3.1.3 Network Representation . 27

3.1.4 Network-Specific Analysis . 29

3.1.5 Searching on a network-specific BRONdb 30

3.2 Experiments . 30

3.2.1 A meta-analysis of BRONdb 31

3.2.2 Health Related Data Meta-Analysis 32

3.2.3 Finding Risk in Networks using BRONdb 33

5

4 Determining Ideal Sensor Placement-CHUCK 39

4.1 Methods . 39

4.1.1 Threat Model . 40

4.1.2 CHUCK . 40

4.2 Experiments . 45

4.2.1 Setup and Implementation . 46

4.2.2 Results . 47

4.2.3 General Discussion . 57

5 Conclusion and Future Work 59

6

List of Figures

3-1 A simplified schematic of BRONdb, showing the connected graph of

the data. Note that some nodes are not connected to any other data

layers, and some are only connected to the next or the previous data

layer, but not both. 26

3-2 Overview of paths provided by BRON for an input of tactic persis-

tence. Given a single tactic, BRON shows all of the attached tech-

niques, all of the CAPECS attached to the techniques, all of the CWEs

attached to the CAPECs, all of the CVEs attached to the CWEs and

all of the App-Platform attached to the CVEs. 28

3-3 A simple schematic showing how we can connect BRONdb to a network

by creating edges between network nodes, which have App-Platform

listed, and the App-Platform-containing nodes in BRONdb. The upper

layers of the BRONdb (higher than CVE) are abbreviated. 29

3-4 Visualization of the contents of BRONdb. Note that the number of

nodes at each threat level that are unconnected. In particular, there

are many CVE nodes that are not connected to a single App-Platform. 31

3-5 The distribution of the risk scores overall, highlighting the floating risk

which is not connected to any App-Platform. 33

3-6 Visualization of the connections for the 9 health CVEs. Note that in

many of the threat data types we see nodes that are only connected to

layer below. The 5 tactics are privilege escalation, persistence, lateral-

movement, defense-evasion and discovery. 34

7

3-7 Visualization of the large sample network configuration. There are

203 subnets, 146 edges and 147 nodes. The different colors represent

different roles. 35

3-8 Visualization of the small sample network configuration. There are

927 subnets, 789 edges and 787 nodes. The different colors represent

different roles. 36

4-1 The CHUCK threat model. From left to right, we see how an attacker

adopts a threat and chooses a number of tactics to accomplish it. The

tactic is then translated to one or more attack patterns, techniques or

procedures, (often malware), that inform the attacker of what version

of software on the network is vulnerable and could be maliciously tar-

geted. The defender, accesses the same information and “sees” the at-

tacker’s campaign allowing it to mitigate what they believe the attacker

will optimally choose to do, with patches and active sensor placement,

subject to budget limitations. 41

4-2 The CHUCK algorithm from a high level. See text for narrative. . . 42

4-3 Attack Grammar . 43

4-4 Defense Grammar . 44

4-5 In Recent_Coev, CHUCK uses the best performing attacker and

best performing defender from the most recent round of evolution and

competition to stand in as the sole adversary for the next generation. 45

4-6 Lockstep coevolutionary algorithm. 46

4-7 Average max fitness values for each generation across 30 runs for the

Attackevolutionary search. 50

4-8 Average max fitness values for each generation across 30 runs for the

Defense evolutionary search . 53

4-9 Fitness values over time during the co-evolutionary searches. 58

8

List of Tables

2.1 Related open-source BAS products 18

3.1 Meaning of acronyms for the data sources 24

3.2 Names of 9 2019 Health related CVEs 33

3.3 Results of network-specific analyses 38

4.1 Experiment parameters . 48

4.2 CHUCK Algorithm Variants . 48

4.3 Average Best Fitness for the 5 algorithm variants and two network sizes.

The best possible attacker fitness for the small network is 109411 and

for the large network is 426814. The lowest defender fitness for the

small network is −108224 and for the large network is −427, 690 . . . 48

4.4 Out of Sample Fitnesses . 48

4.5 Most frequent attack patterns that occurred in the best performing

individual in the large network Attack experiment across the 30 runs. 51

4.6 Nodes selected for mitigation in the Defenceexperiments. The fre-

quency indicates how many times the highest performing (in a trial)

individual phenotype contained this node ID. There were 120 total

nodes identified. 52

4.7 Details on the different mitigations that occurred in the best perform-

ing individual in the Defense experiments for the large and small networks 52

9

4.8 Details on the different mitigations that were found in the best per-

forming defender for the large network in the co-evolution experiments.

The numerical values indicate the percentage of the mitigations that

contained this value. 54

4.9 Co-Ev nodes selected for mitigation. The frequency indicates how

many times the highest performing (in a trial) individual phenotype

contained this node ID. There were 120 total nodes identified 55

4.10 Attack patterns that occurred in the best performing individual in the

small and large network co-evolution experiment across the 30 runs . 56

10

Chapter 1

Introduction

Cyber security has become an increasingly dangerous threat for hospitals. A common

target for hackers are medical devices such as MRI machines, X-Rays, etc that are

usually running old legacy software. Hackers use such devices to gain entry into

hospital networks. From there, the hacker can target large parts of a hospital resulting

in the loss of billions of dollars, and patient privacy and care[30]. In 2016, a hacker

gained access to a hospital network and prevented hospital staff from musing various

medical devices unless the hospital paid $17,000 in bitcoin. [43].

Ideally, hospitals would be able to upgrade all of the devices in a hospital. How-

ever, patching legacy software can be quite costly and potentially impossible. Alter-

native methods like intrusion detection [37], require monitoring the data of behavior

of numerous devices. Such monitoring results in large amounts of information coming

into a system every day. The influx of data that comes from monitoring devices has

been an issue for security observation centers [14, 6]. It is extremely difficult to

comb through all of the data indiscriminately and search for possible malicious tech-

niques and actions. It is even more difficult, to find a sequence of possible techniques

and actions that could comprise an attack and indicate that a multi-stage, advanced

persistent threat is active.

Given these challenges, cyber analysts are opting to additionally practice ‘active

cyber security ’. Active cyber security involves ‘proactively stopping attackers’ rather

than only defending a network by setting up a perimeter and reacting to alarms

11

and breaches [17]. In active cyber security, rather than process system observations

unselectively, specific known attack technique and patterns are consulted and then

matched to specific vulnerabilities or attacker-desirable properties of the network.

This supports putting targeted sensing in place that allows for specific, selective

queries on observations which look for the signatures of the technique. To target such

sensing, specific nodes and applications must be identified as vulnerable and sensors

placed on them to collect observations of the activity within which the technique is

apparent [26]. Examples of such targeted sensing include earmarking an application

and configuring it in verbose mode, capturing the traffic flows of a specific router and

filtering them for specific flow patterns, or a placing a physical tap on a wire for deep

packet inspection.

To practice active cyber security cyber analysts rely on known information about

attack techniques and patterns. There is an overwhelmingly large amount of infor-

mation available for cyber analysts to access. This information may include network-

specification information or lists of different attacker strategies and tactics. Although

there is an abundance of data, it is distributed between different organizations who

describe disparate parts of attacker behavior and network vulnerabilities. The chal-

lenge for the defensive operator is to turn distributed data into specific, coherent, and

actionable knowledge.

MITRE publishes a widely-utilized framework based on the MITRE ATT&CK

matrix [35], which starts by enumerating abstract attacker goals, and then drills

down into how different vulnerabilities meet those goals, and eventually moves to

the level of naming specific applications which are targeted by those vulnerabilities.

Although these data make reference to one another on various MITRE and NIST

websites, there is no comprehensive single source for the combination of this data

from abstract goal down to the level of application.

Current automated cyber solutions for active cyber security typically focus on

approaches like anomaly detection [2]. A complementary helpful utility for many

cyber analysts, who work in a variety of areas such as hospitals, would direct sensor

placement to single out known and unknown attack patterns or, patterns from attacks

12

that have recently increased in frequency recently, like ransomware did in 2019 [4].

1.1 Research Questions

In this thesis, we present two systems: BRON and CHUCK (Cyber Hunting Using

Common Knowledge). BRON. BRON is an organized collection of public threat

data that addresses the issue of unorganized and unevaluated public threat data and

CHUCK is a tool that combines co-evolutionary algorithms with BRON to identify

ideal sensor placement. We would like to answer the following research questions using

BRON:

1. (a) Does the structure BRONdb allow users to easily find pieces of connected

threat data?

(b) How comprehensive is publicly available threat data?

(c) How can we connect BRONdb to existing networks use it to find which

pieces of threat data affect particular parts of the network?

We would like to answer the following research questions using CHUCK:

2. (a) How can we utilize competitive co-evolutionary algorithms as part of an

active cyber security system?

(b) How can we combine competitive co-evolutionary algorithms with existing

public threat data?

(c) A number of coevolutionary algorithm variants can serve to model the

escalating arms race of attack and defense counter-measures, see e.g. [29, 8].

We evaluate several new and existing co-evolutionary algorithms and want

to determine which co-evolutionary algorithm performs best in an active

cyber security system?

13

1.2 Contributions

A key part of BRON, is BRONdb, a relational schema that links together threat

information from abstract attacker goals all the way down to specific affected appli-

cations, as well as a set of analysis tools for analyzing the vulnerabilities present on

any input network. BRON combines publicly available threat data into an easily

accessible format. The contributions of BRON are:

∙ A relational schema that stores public threat data with varying levels of detail

∙ Analysis tools that evaluate the quality and comprehensiveness of the public

threat data

∙ A tool that identifies the most damaging attack patterns on a given network

BRON, which translates to ‘the bridge’ in Swedish, can be thought of as a ‘bridge’

between the many different sources of publicly available threat data. In CHUCK,

we utilize BRON (‘cross the bridge’) as part of an active cyber security utility that

pinpoints sensor placements. CHUCK is initialized with a description of the network

that needs to be protected. CHUCK exploits competitive co-evolutionary algorithms

to identify a network’s optimal active sensor placement and patch modifications in

several different attacker scenarios. The contributions of CHUCK are:

∙ We present a utility, CHUCK, that bridges a gap between the retrospective, re-

actionary stance of current network security and the need to anticipate hard-to-

detect, high stealth, unobserved attack staging of known and unknown threats.

∙ We introduce a new coevolutionary algorithm variant named Recent_Coev

as described in Section 4.1.2

∙ We present a new application of a coevolutionary algorithm variant named

LS_Coev in Section 4.1.2

∙ We evaluate, for the first time, to our best knowledge, evolved solutions on

a network for which they were not evolved in Section. This “out-of-sample”

14

testing offers a machine learning oriented measurement and indicates the level

of transferability a coevolutionary algorithm can support.

∙ We compare different coevolutionary algorithm variants, with out of sample

testing

∙ We demonstrate how public threat data and automatic adaptation, via evolu-

tionary algorithms, can support active cyber security in terms of sensing target

identification.

The combination of CHUCK and BRON provide a useful utility for organizations

like hospitals that have devices running legacy software (and cannot easily be up-

graded).

1.3 Thesis Structure

In Chapter 2, we discuss the related works of CHUCK and BRON. In Chapter 3,

we discuss unifying public threat data BRON and in Chapter 4, we discuss using

CHUCK for ideal sensor placement. Lastly, in Chapter 5, we conclude and list

several areas for future work.

15

16

Chapter 2

Related Works

In Section 2.1, we discuss different approaches for storing threat information. In

Section 2.2, we describe different models and software available for risk assessment.

In Section 2.3, we describe how we incorporate MITRE Attack data into BRON

and CHUCK. In Section 2.4, we list different methods for active sensor placement.

Lastly, in Section 2.5, we discuss co-evolutionary algorithms.

2.1 Frameworks for storing threat information

There have been several proposed frameworks in recent years that all work towards

the common goal of succinctly describing, storing, searching, and propagating threat

information. There are a huge number of frameworks and formats under which threat

information is distributed, including but not limited to MISP [41], CTI [16], OVM

[42], FireEye OpenIOC [7], STIX [28], IDS rules [32], OpenC2 [25], UCO [36], VERIS

[40], and IODEF [3]. A very widely-used framework is published jointly by MITRE

and the NIST, and it consists of a hierarchy of taxonomies that all relate to different

techniques, tactics, and procedures that are part of a kill-chain. In this paper, we

utilize the MITRE ATT&CK matrix and combine it with data from the NIST.

17

Table 2.1: Related open-source BAS products

Name Meta-Analysis Recommendations Taxonomy
BRON/Chuck Yes Yes ATT&CK/NIST
Uber Metta [39] No No ATT&CK
CALDERA [20] No Maybe ATT&CK
BRAWL [19] No No ATT&CK
Atomic Red Team [31] No No ATT&CK
Infection Monkey [10] No Yes Ambiguous, likely ATT&CK
NeSSi [5] No Yes Ad hoc

2.2 Risk Assessment Tools

There are many different ways to perform risk assessment of a network. For example

a mathematical model was proposed by Janiszewski et al. in 2017 implements a risk

calculation model within a real system in order to provide better tools for software

management. Their model of risk also depends on scores from the NIST/MITRE

framework, but they limit themselves to only looking at a few vendors and their op-

erating systems, rather than many types of software. We found that many current risk

assessment tools use perform what is called ‘Breach and Attack Simulations’ (BAS).

There are many other commercially and open-source BAS software. Since many

commercially available products do not share implementation details, we compare

BRON only to other easily found open-source efforts. In Table 2.1, we list some of

the most popular open-source efforts that have the common objective of using threat

information to assess network vulnerability. With the exception of BRAWL, these

major players in the BAS space are agent-based rather than graph-based, and can

take significant configuration. Only BRON provides a meta-analysis of its own data,

allowing the user to more clearly understand the limitations of the underlying data.

Recommendations on how to mend network vulnerabilities are available from some

products, including BRON. It is also clear from this analysis that the use of MITRE

ATT&CK taxonomy is pervasive in the community.

18

2.3 MITE Attack Data

As mentioned above, we use MITRE Adversarial Tactics, Techniques, and Common

Knowledge (ATT&CK) MatrixTM which is “ is a globally-accessible knowledge base

of adversary tactics and techniques based on real-world observations.” [35] along with

NIST as our source of public threat data. The Matrix1, see Figure 2-1a, contains

information for common platforms such as Windows, macOS, Linux, AWS, Office

365, and SaaS. Each column of the Matrix is a tactic in an attack kill chain. For each

tactic, the Matrix has a variable number of cells. Each cell enumerates a technique

or procedure. Some cells also enumerate an attack pattern, often referred to as a

CAPEC [21] (a MITRE acronym expanding to “Common Attack Pattern Enumera-

tion and Classification”). CHUCK draws upon these CAPECs as attack patterns it

considers. CHUCK needs to know whether any application running on its network

is vulnerable to a specific pattern and it needs to know the severity of that vulnera-

bility. To retrieve the severity, CHUCK relies upon a data collection and retrieval

system called BRON [13] that can map from a CAPEC and network description

to an application, the node it runs on, and a vulnerability score which indicates the

severity,. BRON draws upon the MITRE CWETM [24] (Common Weakness Enu-

meration Specification) which is “a community-developed list of common software

security weaknesses” described in a common, text-based, semi-structured language.

It also uses another set of repositories which are the NIST National Vulnerability

Database’s CVE [23] (Common Vulnerabilities Enumeration) Slice and its CPE [22]

Slice (Common Platform Enumeration). Applications in a CVE are specified in a

CPE Common Platform Enumeration, which is a naming specification for software

and applications. CHUCK provides BRON with its network information speci-

fied as CPEs. For common vulnerabilities, the NVD CVE slice provides a Common

Vulnerability Score [15] (CVS). This CVS has been assigned by domain experts ac-

cording to a free and open industry standard for assessing vulnerabilities depending

on the accessibility, integrity, and confidentiality of the application. BRON provides

1Per MITRE practice, we capitalize elements of ATT&CK MatrixTM.

19

CHUCK this score which is in the range of 0 to 10.

(a) Screen shot of the MITRE ATT&CK matrix. Columns are tactics and cells are techniques

2.4 Active Sensor Placement

Multiple security software tools, BRON one among them, rely upon one or more of

ATT&CK, CWE, CVE and CPE [1, 9]. To understand an attack’s impact, they set

up an attack graph which is a representation of all paths through a system that end in

a state where an adversary successfully achieves his goal [27]. In contrast, CHUCK

uses an easily derivable network description, in CPE format. One prior work identifies

critical attack assets in dependency attack graphs, e.g. [34]. Others study topological

vulnerability analysis and analyze vulnerability dependencies to show all possible

attack paths into a network. See [12] for this being done on the CVE level. Work on

optimal sensor placement for intrusion detection and alert prioritization also relates

to CHUCK. Again, it draws upon attack graphs, e.g. [26]. The sensor-placement

problem used in [26] is an instance of the NP-hard minimum set cover problem and it

is solved with an efficient greedy algorithm that depends on an attack graph. All of

these studies assume static adversaries in contrast to how CHUCK assumes adaptive

adversaries and uses an more easily derived network description.

20

2.5 Using Coevolutionary Algorithms

Coevolutionary algorithms explore domains in which the quality of a candidate solu-

tion is its ability to pass a set of tests . Conversely, a test ’s quality is its ability to

fail (not pass) a set of solutions. In competitive coevolution, similar to game theory,

the search can lead to an arms race between test and solution, both evolving while

pursuing opposite objectives [29].

A coevolutionary algorithm evolves two populations with selection and variation

using standard selection, crossover and mutation techniques. One population com-

prises attackers and the other defenders. In each generation, engagements are formed

by pairing an attacker and a defender. Each attacker–defender pair in the engagement

environment is assigned a score. Fitness is then calculated over all an adversary’s en-

gagement scores. The populations are often evolved in alternating steps: first the

attacker population is selected, varied, updated and evaluated against the defenders,

and then the same for the defender population. We name this standard coevolutionary

algorithm Coev.

CHUCK uses Grammatical Evolution (GE) which is a type of evolutionary algo-

rithm. GE has been used in several adversarial domains in cybersecurity [11, 33, 8].

It uses a Backus Naur Form (BNF) context-free grammar and an intermediate in-

terpreter to map from the “genome” to a “phenome” that expresses an executable

behavior. Like all EAs, variation occurs on the genome (in GE, an integer sequence)

and fitness depends on the phenome. In GE the interpretation step raises locality is-

sues, however the grammar and the rewriting assure syntactically valid offspring [38].

A grammar allows the representation of candidate solution behavior to be easily

customized and expressed in direct domain vocabulary. Grammars also offer design

flexibility: changing out a grammar and the environment of behavioral execution does

not require any changes to the rest of the algorithm.

21

22

Chapter 3

Unifying Threat Data-BRON

BRON1 contains two parts: BRONdb and analysis tools. BRONdb is a relational

schema that serves as a central location for the currently unorganized and disperse

public threat data. The analysis tools in BRON provide methods for evaluating the

quality of the public threat data, which is not currently done. We answer research

questions 1a, 1b, and 1c in this chapter.

3.1 Methods

An overview of MITRE and NIST threat data types are described in Section 3.1.1.

BRONdb is discussed in Section 3.1.2. In Section 3.1.3, we discuss network represen-

tation. Network analysis and scoring is discussed in Section 3.1.4.

3.1.1 Data sources and Acronyms

Six different threat data types are collated in BRON. A summary of each data type

is described in Table 3.1, and we give a succinct description below. We used the 2019

version of these data types in building BRON.

Tactics and Techniques The tactics and techniques come from MITRE’s Enter-

prise ATT&CK Matrix [18]. These represent the most general, abstract attacker
1This chapter of the thesis was done in collaboration with Bryn Reinstadler.

23

Table
3.1:

M
eaning

ofacronym
s

for
the

data
sources

A
cronym

Fu
ll

N
am

e
O

rgan
ization

D
ata

typ
e

TA
C

T
IC

A
dversarialTactics

M
IT

R
E

D
ocum

ents
com

m
on

tactics
that

advance
persistent

threats
used

against
netw

orks
T

E
C

H
N

IQ
A

dversarialTechniques
M

IT
R

E
D

ocum
ents

com
m

on
techniques

that
advance

persistent
threats

used
against

netw
orks

C
A

P
E

C
C

om
m

on
A

ttack
P
attern

E
num

eration
and

C
lassification

M
IT

R
E

C
atalog

ofattack
patterns

w
ith

a
com

prehensive
schem

a
and

classification
taxonom

y
C

W
E

C
om

m
on

W
eakness

E
num

eration
M

IT
R

E
N

om
enclature

and
dictionary

ofsecurity-related
flaw

s
in

architecture,design,or
code

C
V

E
C

om
m

on
V

ulnerabilities
and

E
xposures

N
IST

N
om

enclature
and

dictionary
ofsecurity-related

flaw
s

in
softw

are
and

applications
C

P
E

C
om

m
on

P
latform

E
num

eration
N

IST
N

am
ing

specification
for

softw
are

and
applications

24

strategies. Tactics consist of 12 high-level goals that are part of the kill-chain, such

as Initial Access, Persistence, or Exfiltration. Each of the 12 tactics references at least

one technique. Techniques tend to be focused around lower-level details about how

the adversary actually executes its different goals.

Common Attack Pattern and Enumeration (CAPEC) Techniques make ref-

erence to Common Attack Pattern and Enumeration (CAPECs) [21], which list the

most common types of attack patterns.

Common Weakness Enumeration (CWE) A CWE [24] describes the different

types of weaknesses that occur in software; these are linked to by CAPECs above.

The weaknesses are not tied to any specific product or software.

Common Vulnerabilities and Exposures (CVE) CWEs list Common Vulnera-

bilities and Exposures (CVEs) [23], which are known vulnerabilities of major software

applications or operating systems. Each individual CVE has a numerical score that

is part of the Common Vulnerability Scoring System (CVSS) [15]. The higher the

score, the more damaging a CVE is to a network. CVSS scores have a maximum

of 10. BRON uses this score to determine the riskiest applications and nodes on

a network. Currently, BRON contains the 2019 CVE data and future work will

incorporate earlier CVE data.

Common Platform Enumeration (CPE) To connect the vulnerabilities and

weakness to applications and operating systems, we use the Common Platform Enu-

meration (CPE) [22]. A CPE [22] is a standardized way to specify application and

operating systems. We will refer to applications and operating systems that are spec-

ified in the CPE format as App-Platform.

3.1.2 BRONdb

Implementation overview BRONdb is the schema which contains the different

types of threat data and their connections to other pieces of threat data. BRONdb

25

represents threat data pieces as nodes in a graph, and connects nodes with an edge if

two pieces of threat information are connected. The nodes carry information on the

specific piece of data, and their form has been standardized to make use and extension

as easy as possible. A simplified schematic of the BRONdb is given in Figure 3-1.

TACTIC

TECHNIQ

CAPEC

CWE

CVE

App-Platform

Figure 3-1: A simplified schematic of BRONdb, showing the connected graph of the
data. Note that some nodes are not connected to any other data layers, and some
are only connected to the next or the previous data layer, but not both.

Searching BRONdb Since we store the threat data in a graph format, BRON

has bidirectional searching capability all the way from abstract attacker goals such

as Persistance all the way down to the specific applications that can be targeted as

part of an attack. Users of BRON may query with any piece of threat data (e.g.,

A CAPEC, or a set of CWEs) and ask for any type of threat data (e.g., a set of

TACTICs or a list of App-Platform).

For example, consider a hospital that is faced with an attacker who wants to persist

in the network (using the persistence tactic). Given the tactic of persistence, BRON

produces all the possible paths from techniques, CAPECs, CWEs, CVEs, and CPEs

that start at persistence (see Figure 3-2). BRON shows that the tactic persistence

26

is connected to 63 techniques, 18 CAPECs, 16 CWEs, 739 CWEs, and 1,352 App-

Platform. A hospital could utilize the information shown in Figure 3-2 in several

different ways. The hospital can also use BRON to trace individual data paths as

well. For example, it could follow an attacker path that uses a persistence tactic

that has an accessibility technique and uses an attack pattern of Replaced Trusted

Executable. This attack pattern exploits a weakness of Improper Access Control

which has 401 linked vulnerabilities with a total CVSS score of 6,106. The information

from BRON shows that there are many vulnerabilities that link to Google Chrome.

To help mitigate the risk, the hospital could perform appropriate patches for Google

Chrome or switch to a more secure browser. However, it should be noted that the more

frequently a product is used and tested, more vulnerabilities are reported. Future

work should report vulnerabilities based on market share so this is taken into account.

The hospital can use such information to determine what attacks they are most

susceptible too.

3.1.3 Network Representation

In addition to providing a relational schema of the different threat data, BRON also

contributes the capability to find vulnerable areas in actual network configurations.

In this work, we present two example network configurations and give an analysis in

Section 4.2.2.

BRON takes as input networks which are represented by a flat listing of four

types of entities: servers, clients, routers, and firewalls. We refer to the collection

of entities as network nodes. Some of the nodes are connected to each other, while

others exist independently within the network.

Each network node contains a listing of applications. The App-Platform are listed

in CPE format which allows the network configuration to be analyzed using data in

BRONdb. Specifically, if a CVE contains a App-Platform and that App-Platform is

running on at least one node in the network, then BRON considers that CVE to

affect the network node containing the App-Platform and the overall network. The

pre-specified networks that we use are provided by domain experts.

27

TACTIC Persistence

TECHNIQ
File

System
Permissions
Weakness

Change
Default

File
Association

Hypervisor

CAPEC
Using

Malicious
Files

Search
Order

Hijacking

Install
Rootkit

CWE Permission
Issues

Uncontrolled
Search
Path

Element

Improper
Access
Control

CVE
CVE-
2009-
3482

CVE-
2010 -
3402

CVE
-2010
-4624

App-Platform Google
Chrome

Panda
Security

Cisco
iOS

Figure 3-2: Overview of paths provided by BRON for an input of tactic persistence.
Given a single tactic, BRON shows all of the attached techniques, all of the CAPECS
attached to the techniques, all of the CWEs attached to the CAPECs, all of the CVEs
attached to the CWEs and all of the App-Platform attached to the CVEs.

28

3.1.4 Network-Specific Analysis

Running a network-specific analysis consists of two steps. First, we construct a

network-specific BRONdb which connects nodes in the network to the App-Platform

in the full BRONdb, see Figure 3-3. Then, we can calculate risk scores or do other

analyses by traversing the network-specific graph.

CVE

CPE

Network Nodes

Figure 3-3: A simple schematic showing how we can connect BRONdb to a network by
creating edges between network nodes, which have App-Platform listed, and the App-
Platform-containing nodes in BRONdb. The upper layers of the BRONdb (higher
than CVE) are abbreviated.

Calculating a network-specific risk score The network-specific risk score is

computed by iterating through all unique CVEs that are reachable from a network

node and summing together the CVSS scores. See Algorithm 1 for the pseudocode.

Algorithm 1 Algorithm for computing total risk score
total_risk_score = 0
unique_cves = []
for node in network nodes do:

for cpe in node do:
for cve in cpe: do

if cve not in unique_cves then:
total_risk_score += cve_risk_score
unique_cves.append(cve)

Determining the riskiest CPE Analogous to the above, we determine the riskiest

App-Platform by iterating through all CVEs reachable from App-Platform in the

network and taking the per-App-Platform sum of the CVSS scores. The App-Platform

with the highest score is the riskiest App-Platform. Note that we do not have to keep

29

track of unique CVEs because there are no repeated edges from CVE nodes to App-

Platform.

Algorithm 2 Algorithm for computing riskiest App-Platform
max_score = -1
riskiest_App-Platform = None
for App-Platform in app-platforms do:

if App-Platform in network_nodes then:
App-Platform _score = 0
for cve in App-Platform do:

App-Platform _score += risk score for cve
if App-Platform _score > max_score: then

riskiest_App-Platform = App-Platform

3.1.5 Searching on a network-specific BRONdb

Bidirectional search is also supported on a network-specific BRONdb, in a way analo-

gous to search on the full BRONdb. However, in this case, search can also start from

or end at a node in the network.

Network specific analysis could be quite useful for a hospital. Consider a hospital

where several X-Ray machines are running legacy software [37] and the cyber analysts

at the hospital would like to determine the risk the old software poses. A hospital

could create a network-specific BRONdb and determine several useful data points such

as the attacker patterns and vulnerabilities that are a result of the X-Ray machines,

the risk that other nodes in the network have because of the X-Ray machines and

the risk the X-Ray machines pose compared to overall risk to the network. These

pieces of information can help guide a hospital on what steps to take about the X-Ray

machines.

3.2 Experiments

The goals of our experimental section, were to analyze the comprehensiveness of

publicly available threat data as well as determine how we can use a network-specific

BRONdb to gather risk information about a network. To answer these questions, we

30

perform a meta-analysis on the data within BRONdb, and we give an example of

how BRONdb can be used to analyze two different network topologies provided by a

domain expert.

3.2.1 A meta-analysis of BRONdb

First, we wanted to do a simple meta-analysis on the contents of BRONdb. We

examined all of the threat data and connections (nodes and edges) in BRONdb, and

show here the connectivity between the various layers in graphical format (Figure

3-4). Our goals for the meta-analysis were to evaluate the quality of the public threat

data as well as the quality of the risk assessment that BRON provides.

TACTIC 12

TECHNIQ 1 195 70

CAPEC 128 14 52 325

CWE 183 59 23

CVE 867
3894

App-Platform 7782

Figure 3-4: Visualization of the contents of BRONdb. Note that the number of nodes
at each threat level that are unconnected. In particular, there are many CVE nodes
that are not connected to a single App-Platform.

It is also clear that the connections between threat data in the MITRE and NIST

31

data are not a straightforward path from abstract goals (TACTICs) down to afflicted

applications (App-Platform). Instead, in most layers, there are some orphan nodes

which are not connected to other data types, there are nodes that are only connected

to ’parent’ data types, some nodes that are only connected to ’child’ data types,

and other nodes that are connected to both ’parents’ and ’children’. This result

highlights gaps in the currently available threat data which are not being accounted

for by other threat assessment technologies on the market. It also gives guidance

for domain experts who may be willing to link these data together to ensure a more

comprehensive MITRE/NIST database.

Because of the large number of orphan nodes, especially in CVEs, we were curious

about the amount of ’floating’ risk; that is, risk scores that have been given to CVEs

which are not yet annotated with any App-Platform, such that they cannot be easily

be linked to a network. We found that 18.2% of all CVEs (867 / 4761) were not

linked to any App-Platform, and that these CVEs accounted for 19.7% of the total

risk (sum of the risk scores of all the CVEs). Over 55% of the most risky CVEs, those

with a risk score ≥ 9, are orphan nodes. This data shows that on average the floating

CVEs are rated to be more risky than the CVEs which are attached to App-Platform,

and therefore which are attachable to networks. The distribution of risk is shown in

Figure 3-5. Therefore, through this meta-analysis, we have identified a high-impact

area where more work can be done to connect high-risk CVEs to App-Platform to

enable better defense.

3.2.2 Health Related Data Meta-Analysis

Performing a meta-analysis on available data can also be of use to a hospital as well.

A hospital could look at a group of medical related CVEs and determine how much

of a threat the CVEs are to the hospital. For example, we used BRONdb to look at

the paths of 9 2019 CVEs that are on the CVE website list that contain the word

‘health’ in the description. A table with the CVE IDs and descriptions can be seen

in Table 3.2. 3 of the CVEs were not found in BRONdb, indicating a discrepancy

between the website and the downloads list. Each of the remaining 6 CVEs connects

32

(0,1] (1,2] (2,3] (3,4] (4,5] (5,6] (6,7] (7,8] (8,9] (9,10]

Floating Risk
All Risk

Distribution of risk scores for all CVEs and for floating CVEs

Risk range

S
um

m
ed

 R
is

k

0
10

00
30

00
50

00
70

00

Figure 3-5: The distribution of the risk scores overall, highlighting the floating risk
which is not connected to any App-Platform.

CVE-ID Summary
CVE-2019-4546 Additional privileges that are not allowed for some users in IBM Maximo Health- Safety and Environment Manager
CVE-2019-2629 Vulnerability in Oracle Health Sciences Data Management Workbench
CVE-2019-2432 Vulnerability in the Oracle Argus Safety (Login)
CVE-2019-2431 Vulnerability in the Oracle Argus Safety (Console) and requires two users
CVE-2019-2430 Vulnerability in the Oracle Argus Safety (Console) and requires one user
CVE-2019-17390 Privilege escalation in Health Monitor Service
CVE-2019-15563 SQL Injection in Observational Health Data Sciences and Informatics
CVE-2019-11231 Issue with GetSimple CMS
CVE-2019-10686 An SSRF vulnerability was found in an API from Ctrip Apollo

Table 3.2: Names of 9 2019 Health related CVEs

to no more than 2 App-Platform and 1 CWE. The range of the CVSS scores are

5.2-9.8. The CVE with a CVSS score of 5.25 connects to most number of different

CAPECs (57) while some of the other CVEs connect to 0 CAPECs. BRON allows

us to look at the connections between the different data types as seen in Figure 3-6.

We see some ‘information gaps’ in the data of the 9 CVEs. Three of the CVEs are

‘floating’ and most of the CAPECs are not connected to a single technique. While

more information is needed to get the full threat picture of these CVEs, a hospital

can still use the CVEs to make informed security decisions.

3.2.3 Finding Risk in Networks using BRONdb

We were also interested in having the ability to assess specific network topologies.

Here we showcase some analysis strategies for assessing threats on two different custom

network set-ups; we note that any user may create their own network as explained

33

TACTIC 5

TECHNIQ 25

CAPEC 22 52

CWE 2 2

CVE 3 6

App-Platform 5

Figure 3-6: Visualization of the connections for the 9 health CVEs. Note that in
many of the threat data types we see nodes that are only connected to layer below.
The 5 tactics are privilege escalation, persistence, lateral-movement, defense-evasion
and discovery.

above and may run their analyses using the tools already set up in our public domain

repository. A visualization of the large and small network we analyze can be seen in

Figure 3-7 and Figure 3-8 (respectively). Each node represents a device that has an

IP address and a role. Roles are different servers, routers, and clients. Subnets are

made up of devices that share an IP address. We began our network-specific analysis

by looking for vulnerabilities in two networks, one small and one large, both built by

domain experts; the results are shown in Table 3.3. First, we summed the total risk

over the network and then reported that risk as a percent of the total, non-floating

BRONdb risk (the highest possible risk score for any network). Notably, it is unlikely

that a network will reach 100%, since many App-Platform are different versions of

the same software.

Our analyses can suggest the riskiest software currently installed in a network,

as well as identifying the riskiest node, as calculated by the cumulative unique CVE

34

Figure 3-7: Visualization of the large sample network configuration. There are 203
subnets, 146 edges and 147 nodes. The different colors represent different roles.

35

Figure 3-8: Visualization of the small sample network configuration. There are 927
subnets, 789 edges and 787 nodes. The different colors represent different roles.

36

score sum. Some risky software may not be avoidable (such as Mac OS Excel 2019),

but others may be; it is a useful tool for network administrators to see which of their

currently-installed software packages are most likely to come with vulnerabilities, as

this may influence them to update or upgrade these vulnerable softwares on a regular

schedule. In addition, better sensor placement may be possible when cyber defenders

are aware of the most vulnerable pieces of a network. Sensors may, for example, be

placed at the riskiest nodes found by BRON.

BRON is a useful tool that bridges together and evaluates many different pieces

of public threat data. A key part of active cyber hunting, is using such data to

identify vulnerable nodes in a network. As described in the next chapter, we ‘cross

the bridge’ with CHUCK.

37

Table
3.3:

R
esults

ofnetw
ork-specific

analyses

Sum
ofunique,non-floating

C
V

E
s

Score
(%

)
R

iskiest
Softw

are
R

iskiest
node

Sm
allnetw

ork
2126.6

8.4
e.g.

M
ac

O
S

E
xcel2019

e.g.
D

O
D

IN
F
1

Large
netw

ork
2204.9

8.7
e.g.

W
indow

s
Server

2008
e.g.

A
@

A
1R

ngInt04
TotalB

R
O

N
25206.8

100
e.g.

Junos
16.1

N
A

38

Chapter 4

Determining Ideal Sensor

Placement-CHUCK

Within any given network, there will always be nodes that are more vulnerable to

attack than others. As part of active cyber hunting, cyber analysts would like to

find the most vulnerable nodes and place sensors on them. There is no definitive

way to determine which node is the most susceptible to attacks. One could use

BRON to find which nodes have the highest risk according to public threat data.

However, relying just on recorded data does not take into unknown attackers. For

example, if an attacker used a combination of patterns to hack into a CT machine,

then the hospital’s security system would not detect the attacker if only currently

known attackers are considered. CHUCK brings both of these ideas together by

using co-evolutionary algorithms and public threat data to identify nodes for optimal

sensor placement. We answer research questions 2a, 2b, and 2c in this chapter.

4.1 Methods

We present the threat model in Section 4.1.1. In Section 4.1.2 we present descriptions

of the parts of CHUCK.

39

4.1.1 Threat Model

Our threat model takes the perspectives of both an attacker and a defender. It is

shown in Figure 4-1. Observed from left to right, it shows how an attacker adopts a

threat and chooses a number of tactics to accomplish it. A tactic is then translated to

one or more attack patterns, techniques or procedures, (often malware), that inform

the attacker of what version of software on the network is vulnerable and could be

maliciously targeted. The attacker only selects techniques for which the network runs

their software versions While typically an attacker may not have complete network

knowledge, CHUCK adopts this model to make the attacker as strong as possible,

helping the defender to consider the worst case. CHUCK can optionally restrict

the attacker’s knowledge of the network. The defender, conceptually posing as an

attacker, accesses the same information and “sees” the attacker’s campaign allowing

it to mitigate what they believe the attacker will optimally choose to do, with patches

and active sensor placement, subject to budget limitations.

Both attacker and defender access and rely upon publicly available threat data

(broken down into tactics, techniques, attack patterns and procedures) per Section ??.

While the attacker sets up campaigns of techniques, attack patterns or procedures,

they are also able to exploit an application vulnerability that is not presently linked

to publicly known techniques. Its objective is to maximize the severity of its attack.

The defender targets software patches and active sensing locations on nodes running

vulnerable software to minimize the severity of an attack.

4.1.2 CHUCK

Architecturally, CHUCK consists of two modules: a search engine that uses EAs

or competitive coevolutionary algorithms and the BRON framework which provides

the search engine with fitness scores. Figure 4-2 depicts the high level architecture of

CHUCK and its evolutionary adaptation. CHUCK is initialized with a description

of the network that is to be examined by both adversaries. It initializes a population

of attack campaigns and a population of defender action-sequences that either patch

40

Vulnerable
Applications
And OSs

Mitigation
- Patch
- Place sensor

Attack Campaign
Tactics -Attack Patterns

-Techniques
-Procedures

Applications and OS versions on Network

Threat

Tactics

Tactics

Figure 4-1: The CHUCK threat model. From left to right, we see how an attacker
adopts a threat and chooses a number of tactics to accomplish it. The tactic is then
translated to one or more attack patterns, techniques or procedures, (often malware),
that inform the attacker of what version of software on the network is vulnerable and
could be maliciously targeted. The defender, accesses the same information and “sees”
the attacker’s campaign allowing it to mitigate what they believe the attacker will
optimally choose to do, with patches and active sensor placement, subject to budget
limitations.

41

BRON

Initial Network

CVSS Score
Max Min

Attacker Defender
CAPEC and CVE

Network
Modifications

Figure 4-2: The CHUCK algorithm from a high level. See text for narrative.

software or place active sensors on specific nodes and applications. Each generation

CHUCK draws every pairwise combination of attack campaign and defense action

sequence from the two populations. For a pair, it first changes the network description

to enhance the security via the patches and active sensing placements of the defender’s

action sequence. A patch changes the version of software which zeros the vulnerability

severity and active sensing also zero’s the vulnerability severity by effectively making

the technique undesirable for the attacker. CHUCK then decomposes the attack

campaign and passes its attack techniques, patterns and procedures, now simply

called “patterns”, one at a time to BRON along with the updated network description.

BRON uses both units of information to identify whether there is application or

operating system (OS) software running on the network that can be targeted by the

pattern and reports the location and severity of the software vulnerability, if there is

one. CHUCK sums these severities to assign a fitness to the attack, given the defense

and assigns the reciprocal fitness to the defense. The final fitness of a population

member is the sum of all engagement fitnesses. CHUCK then uses selection and

variation to adapt each population before the next generation starts.

Adversary Grammars

We describe the campaign search space of the attacker with a context free grammar

in Backus Naur Form (BNF), see Figure 4-3. CAPECs in public databases are iden-

42

Figure 4-3: Attack Grammar

<attack> ::= <threat>, <cve_values>
<threat> ::= <capec><capec><capec>
<capec> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 ...
<cve_values> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6| 7| 8| 9 ...

tified by a numerical tag. Our attack grammar allows these tags to be referenced.

Additionally, the attack campaign contains a CVE value that does not have to be

associated with a CAPEC. This allows the attacker to include a known CVE but one

that the defender is unaware of, using a threat-based, tactical stance.

The defense grammar consists of a list of network mitigations. The defender

chooses nodes that will be patched or actively sensed. There are two kinds of node

mitigaionss: to the OS or application ones. These are distinguished in the grammar

to support the fact that nodes have a single OS running multiple applications. The

defender has to choose between updating an OS version or an application. If the

defender chooses to update an application, then it has to choose between using a

patch or adding a sensor. CHUCK integrates a budget constraint into defending.

Conceptually, it assigns a unit cost to both kinds of mitigations – patches and sensing.

It insists on some maximum number of sensing mitigations to model their frequently

high cost and allows unlimited patches up to the budget limit. At an implementation

level we currently allow a defender only 4 mitigations with at most 3 being active

sensor placements.

The defender is limited on the number of sensors it can use by the sensor budget.

Lastly, the node value indicates what node in the graph should be modified. The

mitigationss are applied to the network during the fitness evaluation.

Algorithm Variants

We compare three variants of coevolutionary algorithms: Coev (described in Sec-

tion 2.5), Recent_Coev and LS_Coev.

43

Figure 4-4: Defense Grammar

<defense> ::= <mitigations>
<mitigations> ::= [<mitigation>,...]
<mitigationn>::= <os> | <application>
<os> ::= ’os’,<os_node>
<application> ::= <sensor_add> | <patch>
<sensor_add> ::=’sensor add’, <app _node>
<patch> ::= ’patch’,<app_node>
<app_node> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6| 7| 8| 9 ...
<os_node> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6| 7| 8| 9 ...

Recent_Coev Recent_Coev proceeds with two evolving populations, attack

campaigns, A = 𝐴1, .., 𝐴𝑛, and defense modifications, D = 𝐷1, ..., 𝐷𝑛, plus a single

“recent” attack campaign, 𝐴𝑅 and a single “recent” defense modification, 𝐷𝑅. In a

generation, the attack campaigns are evolved then competed against 𝐷𝑅 and the

defense modifications are evolved and competed against 𝐴𝑅. Then the algorithm

assigns 𝐴𝑅 the best performing attacker 𝐴* and 𝐷𝑅 the best performing defense

before executing the next generation. In this way, both populations are always evolved

against the most recent effective adversary. A pictorial representation of this can be

seen in Figure 4-5.

LS_Coev The motivation for lockstep coevolution is to model real-world dy-

namics observed where attackers can iteratively improve its attacks against a fixed

defense, and then the defenders react and then the cycle repeats. The setup for

lockstep coevolution is shown in Figure 4-6. One population is called the locked

population, specified by the locked_population parameter, and the other is the

non-locked population. For each generation, the locked population will evolve for a

number of sub-generations against the fixed non-locked population, determined by the

locked_population_generations parameter. There are locked_population_elite_size

many elites kept during these sub-generations.

The non-locked population will then evolve based on the final state of the locked

population for that step. For the next generation, the locked population will either re-

44

A1
.
.
A*

AN

.

D0

D0

D0

..

.

D1

D*

DN

..

.

A0

A0

..

.
A0

A1
.
.
A*

AN

.

D*

D*

D*

..

.

D1

D*

DN

.

.

.

A*

A*

..

.
A*

A* D*A* D*

Figure 4-5: In Recent_Coev, CHUCK uses the best performing attacker and
best performing defender from the most recent round of evolution and competition
to stand in as the sole adversary for the next generation.

set or evolve from using some number of parents, determined by a locked_population_parents_size

parameter.

4.2 Experiments

In this section we experimentally demonstrate our implementation of CHUCK and

perform an algorithms comparison. We answer our research question about which co-

evolutionary algorithm variant has the highest performance. Section 4.2.1 provides

experimental settings and implementation details. Section 4.2.2 describes experiments

and their results.

45

Generation 0

Non-Locked (NL) Population

NL

Generation 1 NL

Generation N NL

……

Locked (L) Population
L L L

L L L

L L L

…

Figure 4-6: Lockstep coevolutionary algorithm.

Algorithm 3 LS_Coev
1: procedure PopulationStep(population, parents_size, adversaries)
2: parents← TournamentSelection(population, parents_size)
3: new_individuals← Variation(parents)
4: for individual in new_individuals do
5: individual.fitness← AvgFitness(individual, adversaries) ◁ MEU solution concept
6: population← GenerationalReplacement(new_individuals, population)
7: procedure LockstepCoevolution(populations, generations)
8: 𝑡← 0
9: best_individuals← ∅
10: while 𝑡 < generations do ◁ run for # generations
11: locked_pop← populationslocked
12: nonlocked_pop← populationsnonlocked
13: while 𝑡′ < locked_pop_generations do ◁ locked population evolves against fixed adversary population
14: PopulationStep(locked_pop, sizeof(locked_pop), nonlocked_pop)
15: 𝑡′ ← 𝑡′ + 1

16: PopulationStep(nonlocked_pop, sizeof(nonlocked_pop), locked_pop)
17: PopulationStep(locked_pop, locked_population_parents_size, nonlocked_pop)
18: best_individuals← ExtractBest(populations)
19: 𝑡← 𝑡+ 1

20: return best_individuals ◁ Returns best solutions found

4.2.1 Setup and Implementation

Network

We experiment with 2 networks provided by domain experts that are large and small

in size. The large network has 787 nodes and 789 edges while the small network has

147 nodes and 147 edges. We group network nodes by type: servers, clients, routers,

and firewalls. Each node also contains a list of the the applications that execute on

it, specified in Common Platform Enumeration (CPE format) format. We store each

flat listing as a json file. For each network, we build a corresponding adjacency graph

46

based on IP addresses and type. We separately store the connectivity information in

this adjacency representation.

Fitness and BRON Inputs

Attacker campaigns use CAPEC formatting and defender mitigations use CPE for-

matting (plus a way to reference the JSON topology description). The inputs to

BRON are the CAPEC attack patterns and network description after defender mit-

igations have been applied. BRON returns a value we term CVSS which is the CVS

score. We then calculate fitness by summing the CVSS score over for all the attacker

campaigns.

Experimental parameters

Experimental parameters can be found in Table 4.1 and our algorithm variants are

named in Table 4.2. To identify the best attack campaign and/or defense mitiga-

tions from a run, for the large network, we run out of sample evaluation versus an

unseen adversary. We select our unseen attackers and defenders manually from runs

executed independently from these experiments. After a run, we select a pool of high

performing individuals from the run, execute them on the adversaries they never saw

during training, and designate the fittest one as the run’s solution. The experiments

are summarized in Table 4.2, each experiment is run on the large and small networks.

The parameters we use for the evolutionary and co-evolutionary experiments are in

Table 4.1. The next section describes the results from the experiments.

4.2.2 Results

We present the averaged results of 30 runs for each of the 5 algorithm variants, with

both networks (large and small) in Table 4.3. The out-of-sample performance can be

examined in Table 4.4. First, we will compare the overall results of the 5 algorithm

variants and then we will look at each variant individually.

47

Table 4.1: Experiment parameters

Parameter Value
Population size 20
Generations 20
Lock Step Population size 10
Lock Step Generations 2
Crossover Probability 0.9
Mutation Probability 0.1
Max Length 100
Tournament Size 2
Elite size 1
Number of runs 30
Attacker objective maximize total CVSS
Defender objective minimize total CVSS

Table 4.2: CHUCK Algorithm Variants

Evolve attackers vs a non-evolving defense. Attack
Evolve defender on a non-evolving attack Defence
Coevolve both populations, alternating Coev
Coevolve with Lock-step LS_Coev
Coevolve with Recency prioritization Recent_Coev

Table 4.3: Average Best Fitness for the 5 algorithm variants and two network sizes.
The best possible attacker fitness for the small network is 109411 and for the large
network is 426814. The lowest defender fitness for the small network is −108224 and
for the large network is −427, 690

Small Network Large Network
Attacker Fitness Defender Fitness Attacker Fitness Defender Fitness

Attack 109393± 0.0 N/A 426659.75± 0.0 N/A
Defense N/A −90566± 2260 N/A −416691± 3302
Recent_Coev 108367± 0.0 −107835± 55 426813± 3 −419668± 50
Coev 105386± 1505 −104520± 1530 426648± 1564 −421485± 2445
LS_Coev 105782± 1313 −105031± 1450 426652± 1160 −423619± 1785

Table 4.4: Out of Sample Fitnesses

Variant Out of Sample Attacker Out of Sample Defender
Attack N/A Mean:426620, Min: 426526
Defense Mean: −408782, Min: −426750 N/A
Recent_Coev Mean:−408746,Min:−426714 Mean:426626, Min: 426526
Coev Mean:−408623, Min:−426596 Mean:426617, Min: 426517
LS_Coev Mean:−408591,Min:−426536 Mean:426620, Min: 426522

48

Algorithm Variant Comparison

To compare the performance across the 5 algorithm variants, we used out-of-sample

testing. We report the average and minimum score as seen in Table 4.4.

We can first examine the results from the averaged 30 runs that we in Table

4.3 for a baseline comparison. In general, we would expect that a population that

is evolving against a static population, would have a higher fitness value compared

to two populations co-evolving with each other. Our results show this since the

Attackand Defencevariants had the highest performance.

As we can see from Table 4.4, the performance of the defender against the out of

sample attacker improves as we try the more complex and realistic approaches to co-

evolution. This indicates that the actual distribution of attackers is more reflective of

attackers that evolve quite quickly compared to defense systems. We also see that the

attackers found during Coev are not quite as strong as the attackers found during

LS_Coev.

The results for the out-of-sample defender were not as definitive as the out-of-

sample attacker results. There are a small number of CAPECs that link to a large

number of CVE risk scores. These ‘powerful’ CAPECs were found in all of the

strongest attackers from each of the evolution and co-evolution experiments. The

end result is explained by the many combinations of CAPECs that have similar risk

scores.

A useful baseline measure we can examine when looking at the individual variants,

is the number of unique CAPECs found in a population across the 30 runs. The

large and small networks are exposed to the vulnerabilities of 196 and 186 CAPECs

(respectively).

Attack

The goal of the attack experiments was to examine the performance of an attacker

that is competing against a fixed defender. We examine the individual solutions which

consist of CAPECs below.

49

Figure 4-7: Average max fitness values for each generation across 30 runs for the
Attackevolutionary search.

50

Table 4.5: Most frequent attack patterns that occurred in the best performing indi-
vidual in the large network Attack experiment across the 30 runs.

Number of CAPECs per group CAPECS

1

Using Malicious Files (32)
Manipulating Web Input to File System Calls (37)
Leverage Executable Code in Non-Executable Files (39)
XML Oversized Payloads (42)
Overflow Buffers (61)

2

Manipulating Web Input to File System Calls and Overflow Buffers (33)
Leverage Executable Code in Non-Executable Files and XML Oversized Payloads (25)
Restful Privilege Elevation and XML Oversized Payloads (21)
AJAX Fingerprinting and Overflow Buffers (20)
Using Malicious Files and XML Oversized Payloads (18)

Attacker Patterns Almost all (≈ .98) of the CAPECs that posed a risk to the

networks were found at least once in the best performing individual phenotype across

both networks. There were many more unique CAPECs that appeared in the phe-

notypes: the attacker found a total of 517 and 515 unique CAPEC values across

all the individuals for the large and small networks. Since there are only 575 unique

CAPECs, the vast majority of possible values for an individual were used at least once

during the search, which indicates the importance of population diversity. CAPECs

occurred quite frequently compared to others as can be seen Table 4.5. Many of the

CAPECs that frequently occur are related to buffer overflow. Another interesting

point to note about the CAPECs is that some CAPECs were more likely to occur

with certain CAPECs. If the risk score of CAPECs was additive, then we would ex-

pect that the two most frequently occurring individual CAPECs, would be the most

frequently occurring pair of CAPECs. However, as we see from Table 4.5, this is

not the case, indicating that the attack power of combining two CAPECs is more

complicated than a simple additive process.

Fitness Scores From Figure 4-7, we see that attackers for both the large and small

networks were able to reach the maximum fitness within a few generations. This is

expected since the defender is static.

51

Table 4.6: Nodes selected for mitigation in the Defenceexperiments. The frequency
indicates how many times the highest performing (in a trial) individual phenotype
contained this node ID. There were 120 total nodes identified.

Network Node ID Frequency Centrality

Small Network

windows_10-ABUsr11 7 0.007)
windows_10-ABUsr2 9 0.007
windows_server_2008-AHProxy 13 0.007
windows_server_2008-AHDNS 15 0.007
windows_server_2008-JF 26 0.007

Large Network

windows_server_2008-Dfile4 7 0.0012
windows_server_2008-AHProxy 9 0.0012
windows_server_2008-Q 13 0
windows_10-MCN 22 0.0025
windows_10-CEF 26 0.012

Table 4.7: Details on the different mitigations that occurred in the best performing
individual in the Defense experiments for the large and small networks

Domain Large Network Small Network
Client 0.43 0.50
Server 0.57 0.50
OS 0.59 0.64
Sensor_ Add 0.225 0.22
Patch 0.18 0.14
Most Common OS Windows Server 2008 Windows Server 2008
Most Common Application Google Chrome Adobe Acrobat

Defence

The goal of the Defense experiments was to examine the performance of a defender

against a fixed attacker. In particular, we are interested in how the defender selects

nodes to be mitigated since the nodes that are selected would likely be good places

for sensor placement. The nodes can be seen in Table 4.6 and the average max fitness

values across the 30 trials can be seen in Figure 4-8.

For each mitigation, the defender had several options. The defender could choose

to mitigate an ‘os’ or an ‘app’ and if they chose to mitigate an app, then the two

mitigation options were patch and sensor_add. Additionally, the defender had to

chose between updating a client node or a server node. An overview of the different

mitigations can be seen in Table 4.7. Generally, we see that the defender chose to

52

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Generation

424000

422000

420000

Fi
tn

es
s

Large Network

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Generation

105000

100000

95000

Fi
tn

es
s

Defense Fitness Values
Small Network

Figure 4-8: Average max fitness values for each generation across 30 runs for the
Defense evolutionary search

53

Table 4.8: Details on the different mitigations that were found in the best performing
defender for the large network in the co-evolution experiments. The numerical values
indicate the percentage of the mitigations that contained this value.

Domain Recent_Coev Coev LS_Coev
Clients 0.33 0.55 0.56
Servers 0.667 0.45 0.44
OS 0.54 0.53 0.58
Sensor _Add 0.23 0.275 0.25
Patch 0.23 0.195 0.17
Most Common OS Mitigated Widows 10 Windows 10 Windows 10
Most Common App Mitigated Internet Explorer Adobe Acrobat Adobe Acrobat

mitigate the OS most of the time and that the OS was usually a Windows 2008

Server. We also see that for applications, Sensor _ Add was more frequent than

Patch, which makes sense since Sensor _Add has a higher impact. The two networks

differed in the application that was most mitigated. However, both also contained

many applications that were mitigated only once during the experiments.

Coevolving defender and attacker

A summary of the co-evolution fitness values found during training can be seen in

Table 4.3. Summaries of the different mitigations found by co-evolution defenders

can be found in Tables 4.8 and Table 4.9. Graphs of the fitness values can be seen in

Figure 4-9.

Recent_Coev From the out-of-sample performance, we see that in the defense

case Recent_Coev co-evolution, has better performance than the static cases but

worse performance compared to Coev and LS_Coev. The algorithm was able to

find 468 unique CAPECs across the 30 runs in both the large network and small

network. However, the attacker only found 91% of the possible CAPECs for both

networks which is smaller compared to the percentage found by the attacker evolving

against a fixed defender. This is expected because adapting to an adapting adversary

is more challenging for evolutionary search.

The defense mitigations used by Recent_Coev were a bit different than the

ones chosen in the Defenceexperiments but were fairly consistent with the mitigations

54

Ta
bl

e
4.

9:
C

o-
E

v
no

de
s

se
le

ct
ed

fo
r

m
it

ig
at

io
n.

T
he

fr
eq

ue
nc

y
in

di
ca

te
s

ho
w

m
an

y
ti

m
es

th
e

hi
gh

es
t

pe
rf

or
m

in
g

(i
n

a
tr

ia
l)

in
di

vi
du

al
ph

en
ot

yp
e

co
nt

ai
ne

d
th

is
no

de
ID

.T
he

re
w

er
e

12
0

to
ta

ln
od

es
id

en
ti

fie
d

L
ar

ge
N

et
w

or
k

S
m

al
l
N

et
w

or
k

T
yp

e
of

C
o-

E
vo

lu
ti

on
N

od
e

ID
Fr

eq
u
en

cy
C

en
tr

al
it
y

N
od

e
ID

Fr
eq

u
en

cy
C

en
tr

al
it
y

R
ec

en
t
_

C
o
ev

A
B

F
ile

8
0.

00
12

A
G

F
9

0.
00

7
C

F
T

P
9

0.
00

12
w

in
do

w
s_

se
rv

er
_

20
08

A
H

D
N

S
12

0.
00

7
D

F
ile

3
12

0.
00

12
w

in
do

w
s_

se
rv

er
_

20
08

A
ID

N
S

21
0.

00
7

D
F
ile

4
16

0.
00

12
JF

21
0.

00
7

w
in

do
w

s
_

10
C

E
F

35
0.

00
12

A
IF

25
0.

00
7

C
o
ev

C
K

3
0.

00
12

w
in

do
w

s_
10

-A
B

U
sr

15
3

0.
00

7
w

in
do

w
s_

10
C

L
3

0.
00

12
w

in
do

w
s_

se
rv

er
_

20
08

-O
F
D

N
S

3
0.

00
7

w
in

do
w

s_
10

C
K

4
0.

00
12

w
in

do
w

s_
se

rv
er

_
20

08
-

A
ID

N
S

4
0.

00
7

w
in

do
w

s_
10

M
C

N
7

0.
00

25
w

in
do

w
s_

se
rv

er
_

20
08

0O
W

eb
4

0.
00

7
w

in
do

w
s_

10
C

E
E

7
0.

00
12

w
in

do
w

s_
se

rv
er

_
20

08
A

5
0.

00
7

L
S_

C
o
ev

w
in

do
w

s_
10

F
ile

C
on

t
3

0.
00

12
w

in
do

w
s_

se
rv

er
_

20
08

A
G

F
2

0.
00

7
w

in
do

w
s_

se
rv

er
_

20
08

D
F
ile

4
3

0.
00

12
w

in
do

w
s_

se
rv

er
_

20
08

A
IN

C
F
ile

2
0.

00
7

w
in

do
w

s_
10

C
K

4
0.

00
12

w
in

do
w

s_
10

A
R

U
se

r1
4

3
0.

00
7

w
in

do
w

s_
10

M
C

N
6

0.
00

25
w

in
do

w
s_

se
rv

er
_

20
08

A
H

pr
ox

y
4

0.
00

7
w

in
do

w
s_

10
C

E
F

8
0.

00
12

w
in

do
w

s_
se

rv
er

_
20

08
JF

10
0.

00
7

55

Table 4.10: Attack patterns that occurred in the best performing individual in the
small and large network co-evolution experiment across the 30 runs

Type of Co-Evolution Large Network Small Network

Recent_Coev

Overflow Buffers (20)
Dom-Based XSS (14)

XML Oversized Payloads (12)
XSS Using MIME Type Mismatch (12)

Buffer Overflow in an API Call (11)

Overflow Buffers (19)
Leverage Executable Code in Non-Executable Files (13)

Manipulating Web Input to File System Calls (13)
Target Programs with Elevated Privileges (12)

XML Oversized Payloads (12)

Coev

Using Malicious Files (11)
Filter Failure through buffer overflow (11)

Restful Privilege Escalation (12)
Overflow Buffers (12)

XML Oversized Payloads (15)

Target Programs with Elevated Privileges (9)
Restful Privilege Escalation (11)

Buffer Overflow (12)
Using Malicious Files (12)

XML Oversized Payloads (16)

LS_Coev

XML Oversized Payloads (11)
Manipulating Web Input to File System Calls (12)

XML Nested Payloads (14)
Overflow Buffers (15)
Dom-Based XSS (17)

Leverage Executable Code in Non-Executable Files (10)
AJAX Fingerprinting (10)

XML Oversized Payloads (11)
XML Nested Payloads (15)

Overflow Buffers (16)

found by Coev and LS_Coev. Recent_Coev preferred servers to clients which

was different than Coev and LS_Coev. Further analysis is required to figure out

why.

Coev Coev had the second best performance out the algorithm variants in the

out-of-sample test. We see that similar attack patterns were chosen for the solutions.

There were 475 and 482 unique CAPEC individuals for the large and small networks,

which accounted for about 93% of the possible CAPECs from both networks. One

of the main benefits of co-evolution is the ability to explore a more diverse group of

both defenders and attackers which ultimately leads to being more ‘prepared’ for an

unknown attacker. Finding 93% of the possible attackers combined with the varied

defenders led to the increased performance over the Recent_Coev.

LS_Coev LS_Coev had the highest fitness in the out-of-sample defender test.

While the most frequently used CAPECs were similar, the number of unique CAPECs

found and the percentage of possible CAPECs was higher for LS_Coev: 482 unique

CAPECs for the large network, which account for 94% of the possible CAPECs of the

large network. While the increase is not large, there are some individual CAPECs

that can be quite damaging and can lead to a large increase or decrease in fitness. If

we increased the number of lock step generations, we likely would get close to having

at least one of each possible CAPEC in an attack solution. LS_Coev and Coev

56

used mitigations similarly.

4.2.3 General Discussion

From the plots in Figure 4-9, we can see the two sides of the co-evolution responding

to the increasing and decreasing strengths. In particular, we see that early in Lockstep

co-evolution, the attack gets particularly strong (from the extra attack evolutions).

This causes a corresponding decrease in fitness for the lockstep defender. While the

training defender fitness for LS_Coev is lower than for Coev, the increased attacker

strength, ultimately helps the LS_Coev perform better in the test fitness evaluation.

From just examining which nodes were selected for mitigation, it would be difficult

to determine which nodes should be used for sensor placement. However, from the

details of the mitigations, we see that generally, both alternating and lockstep co-

evolutions, mitigated the same OS and applications. The fact that were not the

exact same nodes were not chosen was likely due to the fact that the nodes on the

networks are fairly similar.

57

0 1 2 3 4 5 6 7 8 9
Generation

426000

427000

428000
Fi

tn
es

s
Co-Evolutionary Attack Fitness Values

Alternating Co-Ev
Lockstep

0 1 2 3 4 5 6 7 8 9
Generation

405000

410000

415000

Fi
tn

es
s

Human-in-the-Loop

0 1 2 3 4 5 6 7 8 9 10

420000

415000

410000

Fi
tn

es
s

Co-Evolutionary Defense Fitness Values
Alternating Co-Ev
Lockstep

0 1 2 3 4 5 6 7 8 9 10
Generation

419900

419880

419860

419840

419820

419800

Fi
tn

es
s

Human-in-the-loop

Figure 4-9: Fitness values over time during the co-evolutionary searches.58

Chapter 5

Conclusion and Future Work

In this thesis, we presented two systems BRON and CHUCK that enable cyber

analysts and large organizations to participate in a form of active cyber hunting that

uses current public threat knowledge and takes into account an unknown attacker.

BRON demonstrated how a centralized relational schema of public threat data can be

used to identify known known attack patterns and vulnerabilities that a network, such

as one at a hospital, is vulnerable too. Additionally, we showed how a meta-analysis

of existing public threat data points to areas that need in existing public threat data.

Information on the quality of public threat data can help organizations with large

networks decide what threat to focus on. In CHUCK, we described how to build

an automated system for sensor placement that combines co-evolutionary algorithms

and existing public threat data. CHUCK can be quite helpful for large organizations

like hospitals that are constantly facing new threats since provides decision support

for sensor placement that takes into account an evolving adversary. We also identified

co-evolutionary algorithm variant performed best in our experiments. What is novel

about our approach in CHUCK is that by using evolutionary and co-evolutionary

algorithms, we were able to take into account an evolving adversary as well as known

vulnerabilities in a network.

Future work would likely take the most vulnerable applications as determined by

our system and then place a sensor in that location. Once the sensor is in place, we

could run more co-evolutionary experiments to see if an adversary can find ways to

59

avoid the sensor and to see if the sensor placement should be changing. Another area

of future work would be to test the system on more realistic topologies, such as ones

in hospitals. This could give a better idea how the system would perform on actual

network.

60

Bibliography

[1] Andy Applebaum, Doug Miller, Blake Strom, Chris Korban, and Ross Wolf.
Intelligent, automated red team emulation. In Proceedings of the 32nd Annual
Conference on Computer Security Applications, pages 363–373, 2016.

[2] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A
survey. ACM computing surveys (CSUR), 41(3):1–58, 2009.

[3] R Danyliw, J Meijer, and Y Demchenko. The Incident Object Description Ex-
change Format. Technical report, RFC Editor, 2007.

[4] Jessica Davis. Ransomware Attacks Double in 2019, Brute-Force Attempts In-
crease, September 2019.

[5] Distributed Artificial Intelligence Laboratory. NeSSi.

[6] Josiah Dykstra and Celeste Lyn Paul. Cyber operations stress survey (coss):
Studying fatigue, frustration, and cognitive workload in cybersecurity opera-
tions. In 11th {USENIX} Workshop on Cyber Security Experimentation and
Test ({CSET} 18), 2018.

[7] Fire Eye. Indicators of Compromise (IOC).

[8] Dennis Garcia, Anthony Erb Lugo, Erik Hemberg, and Una-May O’Reilly. In-
vestigating coevolutionary archive based genetic algorithms on cyber defense
networks. In Proceedings of the Genetic and Evolutionary Computation Con-
ference Companion, GECCO ’17, pages 1455–1462, New York, NY, USA, 2017.
ACM.

[9] Steven Gianvecchio, Christopher Burkhalter, Hongying Lan, Andrew Sillers, and
Ken Smith. Closing the gap with apts through semantic clusters and automated
cybergames. In International Conference on Security and Privacy in Communi-
cation Systems, pages 235–254. Springer, 2019.

[10] Guardicore. Infection Monkey.

[11] Erik Hemberg, Joseph R. Zipkin, Richard W. Skowyra, Neal Wagner, and Una-
May O’Reilly. Adversarial co-evolution of attack and defense in a segmented
computer network environment. In Proceedings of the Genetic and Evolutionary

61

Computation Conference Companion, GECCO ’18, pages 1648–1655, New York,
NY, USA, 2018. ACM.

[12] Sushil Jajodia and Steven Noel. Topological vulnerability analysis. In Cyber
situational awareness, pages 139–154. Springer, 2010.

[13] Jonathan Kelly, Michal Shlapentokh-Rothman, Erik Hemberg, Nick Rutar, and
Una-May O’Reilly. Bron - bridging public threat data for cyber hunting. 2019.

[14] Sitaram Kowtha, Laura A Nolan, and Rosemary A Daley. Cyber security oper-
ations center characterization model and analysis. In 2012 IEEE Conference on
Technologies for Homeland Security (HST), pages 470–475. IEEE, 2012.

[15] Information Technology Laboratory. Vulnerability metrics cvss.

[16] Luatix. Open Cyber Threat Intelligence Platform.

[17] Sadegh M Milajerdi, Birhanu Eshete, Rigel Gjomemo, and VN Venkatakrish-
nan. Poirot: Aligning attack behavior with kernel audit records for cyber threat
hunting. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, pages 1795–1812, 2019.

[18] MITRE. Att&ck matrix for enterprise.

[19] MITRE. BRAWL Automated Adversary Emulation Exercise.

[20] MITRE. Caldera: Automated Adversary Emulation.

[21] MITRE. Common attack pattern enumeration and classification.

[22] MITRE. Common platform enumeration.

[23] MITRE. Common vulnerabilities and exposure.

[24] MITRE. Common weakness enumeration.

[25] Pat Muoio and Paul Green. Open Command and Control (OpenC2). Technical
report, G2, 2015.

[26] Steven Noel and Sushil Jajodia. Optimal ids sensor placement and alert pri-
oritization using attack graphs. Journal of Network and Systems Management,
16(3):259–275, 2008.

[27] Joseph Pamula. Attack graphs: scalable construction and analysis. 2007.

[28] Rich Piazza, John Wunder, and Bret Jordan. STIXTM Version 2.0. Part 1: STIX
Core Concepts, July 2017.

[29] Elena Popovici, Anthony Bucci, R Paul Wiegand, and Edwin D De Jong. Co-
evolutionary principles., 2012.

62

[30] A. Razaque, F. Amsaad, M. Jaro Khan, S. Hariri, S. Chen, C. Siting, and X. Ji.
Survey: Cybersecurity vulnerabilities, attacks and solutions in the medical do-
main. IEEE Access, 7:168774–168797, 2019.

[31] Red Canary. Atomic Red Team.

[32] Mohsen Rouached and Hassen Sallay. An Efficient Formal Framework for In-
trusion Detection Systems. Procedia Computer Science, 10:968–975, December
2012.

[33] George Rush, Daniel R. Tauritz, and Alexander D. Kent. Coevolutionary agent-
based network defense lightweight event system (candles). In Proceedings of the
Companion Publication of the 2015 Annual Conference on Genetic and Evolu-
tionary Computation, GECCO Companion ’15, pages 859–866, New York, NY,
USA, 2015. ACM.

[34] Reginald E Sawilla and Xinming Ou. Identifying critical attack assets in depen-
dency attack graphs. In European Symposium on Research in Computer Security,
pages 18–34. Springer, 2008.

[35] Blake E Strom, Joseph A Battaglia, Michael S Kemmerer, William Kupersanin,
Douglas P Miller, Craig Wampler, Sean M Whitley, and Ross D Wolf. Finding
cyber threats with att&ck-based analytics. Technical report, MITRE, 2017.

[36] Zareen Syed, Ankur Padia, M. Lisa Mathews, Tim Finin, and Anupam Joshi.
UCO: A Unified Cybersecurity Ontology. AAAI Press, February 2016.

[37] T. Tervoort, M. T. De Oliveira, W. Pieters, P. Van Gelder, S. D. Olabarriaga,
and H. Marquering. Solutions for mitigating cybersecurity risks caused by legacy
software in medical devices: a scoping review. IEEE Access, pages 1–1, 2020.

[38] Ann Thorhauer and Franz Rothlauf. On the locality of standard search opera-
tors in grammatical evolution. In International Conference on Parallel Problem
Solving from Nature, pages 465–475. Springer, 2014.

[39] Uber. Metta.

[40] Verizon Security Research & Cyber Intelligence Center. Vocabulary for Event
Recording and Incident Sharing, 2013.

[41] Cynthia Wagner, Alexandre Dulaunoy, Gérard Alexandre, and Andras Iklody.
MISP: The Design and Implementation of a Collaborative Threat Intelligence
Sharing Platform. pages 49–56, October 2016.

[42] Ju An Wang and Minzhe Guo. OVM: An Ontology for Vulnerability Manage-
ment. April 2009.

[43] Richard Winton. Hollywood hospital pays $17,000 in bitcoin to hackers; FBI
investigating. The Los Angles Times, February 2016.

63

	Introduction
	Research Questions
	Contributions
	Thesis Structure

	Related Works
	Frameworks for storing threat information
	Risk Assessment Tools
	MITE Attack Data
	Active Sensor Placement
	Using Coevolutionary Algorithms

	Unifying Threat Data-BRON
	Methods
	Data sources and Acronyms
	BRONdb
	Network Representation
	Network-Specific Analysis
	Searching on a network-specific BRONdb

	Experiments
	A meta-analysis of BRONdb
	Health Related Data Meta-Analysis
	Finding Risk in Networks using BRONdb

	Determining Ideal Sensor Placement-CHUCK
	Methods
	Threat Model
	CHUCK

	Experiments
	Setup and Implementation
	Results
	General Discussion

	Conclusion and Future Work

