
Vulcan: Classifying Vulnerabilities in Solidity
Smart Contracts Using Dependency-Based Deep

Program Representations
by

Shashank Srikant
B.Tech, National Institute of Technology Kurukshetra, India (2011)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2020

c○ Massachusetts Institute of Technology 2020. All rights reserved.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Department of Electrical Engineering and Computer Science

May 15, 2020

Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Una-May O’Reilly

Principal Research Scientist, Computer Science & AI Laboratory
Thesis Supervisor

Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students



2



Vulcan: Classifying Vulnerabilities in Solidity Smart

Contracts Using Dependency-Based Deep Program

Representations

by

Shashank Srikant

Submitted to the Department of Electrical Engineering and Computer Science
on May 15, 2020, in partial fulfillment of the

requirements for the degree of
Master of Science

Abstract
As domain specific languages such as Solidity for Ethereum have emerged to pro-
gram blockchain distributed ledgers, domain-specific bugs and vulnerabilities have
reciprocally arisen. In this thesis, I propose a machine learning approach to designing
classifiers which can flag specific lines of programs containing such vulnerabilities.
This classification task calls for reasoning beyond what tokens are in a line to reason-
ing about how each token lies within a control context (e.g. loop) and how its meaning
depends on its preceding definition. We present a neural architecture, Vulcan, which
employs a distributed representation in a latent feature space to express these prop-
erties, while ensuring that lines of similar meaning have similar features. Using paths
of the program’s abstract syntax tree (AST), Vulcan inputs contextual information
about tokens in a line to a bi-directional LSTM with an attention mechanism. It
concurrently represents the meaning of a token in a line by recursively embedding all
preceding lines where it is defined. In our experiments, Vulcan compares favorably
with a state-of-the-art classifier that requires significant preprocessing of programs,
suggesting the utility of using deep learning to model program dependence informa-
tion.

Thesis Supervisor: Una-May O’Reilly
Title: Principal Research Scientist, Computer Science & AI Laboratory
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Chapter 1

Introduction

Vulnerabilities and bugs that escape recognition persist and remain a concern for

developers and enterprises. Preemptive detection of vulnerabilities before program

execution is a challenging problem because it is hard to statically characterize a

program. Although a vulnerability (such as a buffer overflow) is easy to describe,

identifying a causal path leading up to it is hard. A pathological combination of

control paths and data transformations has to be anticipated.

In this thesis, I study programs written in Solidity, a domain specific language

(DSL) designed to implement Ethereum, a popular decentralized, distributed ledger.

Solidity programs support high-stakes transactions but recent concurrency and

over/underflow bugs and vulnerabilities exploited in them have resulted in multi-

million dollar losses [16]. The combination of the Solidity programming model and

requirements of a distributed ledger drive unique versions of these bugs and vulner-

abilities, likely to be common to other (but not wider) distributed ledger and DSL

settings. Unfortunately, without highly expert repurposing, existing analysis tools

and techniques are inadequate for detection and a pool of active developers who can

contribute to this task is usually too small to help. The method we investigate in

this work aims to reduce the expertise and effort required to repurpose traditional

analysis tools.

A recent direction of program analysis research infers properties of programs by

learning statistical models of them with ‘Big Code’ architectures [23]. Typically, a

15



‘BigCode’ architecture relies upon a corpus of programs and has two key stages. The

first stage models the program space represented by the corpus. The representation

space is a high-dimensional latent space in which the features of programs have com-

parative value i.e. the representations of similar program components are close in

this space while dissimilar components are far apart. The input to the stage is a

program and the output is the program’s distributed representation. This distributed

representation is passed to the second stage where another machine learning model

(classifier) is trained in a supervised manner with the distributed representations and

their corresponding labels. A variety of applications are well served by this approach

including renaming poorly named variables to meaningful ones [7], detecting clones

[30], and detecting bugs in functions [22]. See Allamanis et al. [3] for a review of

relevant literature.

In this work, we investigate whether such a ‘Big Code’ architecture can classify

line-level vulnerabilities in Solidity programs. Applications reaping improvements

from the ‘Big Code’ approach often, in their first stage, represent programs merely by

sequences of their source-code tokens. The majority of examples listed in Table 1 in

the survey of Allamanis et al. [3] use tokens. Tokens are convenient to use, however

whether they are ideal for the task of vulnerability classification is open to question.

Programs have rich structural and contextual information which a sequence of tokens

does not explicitly capture. Further, programmers need to debug or to reason about

vulnerabilities. For this, they need line-level detection. To date, popular applications

such as CodeSummarize - predicting a semantically meaningful name to a method

when provided its body [5], VarRename - predicting a semantically meaningful

name to a variable [2], VarMisuse - predicting whether a variable is ‘out of place’,

given the context it appears in [2] either reason at the granularity of a whole class or

method, or reason about specific tokens (variables) appearing in the program. Our

goal is line-level vulnerability classification.

We present Vulcan (Vulnerability Classification Network), a neural network archi-

tecture, which balances the twin goals of capturing rich semantic information while

having the contents of a line of program as the unit of representation. We demon-
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strate Vulcan on vulnerability classification at the line level in Solidity programs.

Vulcan takes a much more nuanced approach to forming a distributed representation

than tokenization. Using paths of the program’s abstract syntax tree (AST), Vulcan

inputs contextual information about tokens in a line to a bi-directional LSTM with

an attention mechanism. It concurrently represents the meaning of token in a line

by recursively embedding all preceding lines where it is defined. We train Vulcan on

labels provided by Mythril, a state of the art static analysis tool for Solidity [19].

While Mythril, like Vulcan, can also detect vulnerabilities, it relies upon expertly

hand-crafted assertions related to erroneous program states in Solidity. Our goal is

to establish that a purely data-driven approach, without specialized proficiency and

manual effort, can match the performance of an expert-designed tool like Mythril.

We foresee architectures like Vulcan being central to performing similar detection for

other nascent DSLs, through transfer learning and domain adaptation. We evaluate

Vulcan’s performance against Vuldeepecker, another state-of-the-art, data-driven,

vulnerability detection system. We also evaluate whether the distributed represen-

tation produced by our system defines a latent feature space where lines of similar

meaning have similar features.

We proceed as follows: Chapter 2 describes the Solidity-specific vulnerabilities

Vulcan classifies. Chapter 3 presents the representation design. Chapter 4 covers

related work, Chapter 5 conveys Vulcan’s algorithm and method and Chapter 6 ex-

perimental setup. Chapter 7 presents experimental results and Chapter 8 conclusions

and future work.
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Chapter 2

Motivation

We describe briefly the Ethereum environment, vulnerabilities encountered in Solidity

programs, and highlight why extant tools can be served well by our current approach.

2.1 Solidity and Ethereum

Ethereum is a popular public, decentralized, distributed ledger. It maintains transpar-

ent and immutable records which are programmable on the ledger. These are called

smart contracts. Smart contracts enable program logic to be shared and executed

by multiple parties. They are written in Solidity, a nascent programming language

designed specifically for them. Solidity follows an object-oriented paradigm, is stat-

ically typed, and compiles to bytecode which can be executed on Ethereum’s Virtual

Machine (EVM).

2.2 Vulnerabilities in Solidity programs

Solidity programs control operations occurring in a blockchain environment. A

combination of various design flaws in Solidity and the unique nature of operations

on Ethereum have resulted in attackers exploiting very specific vulnerabilities. Two

which are very unique to the blockchain model of operations are:

∙ Transaction order dependency (TOD) In Solidity’s programming model, a
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Figure 2-1: TOD - The
value of owner in vote9
can be affected by a call
to onlyOwner

Figure 2-2: StateChange
- isClose will not be
set to true if transfer
hangs

Figure 2-3: IntUnOv -
The subtraction opera-
tion can underflow if 𝑏 >
𝑎

caller calling a function can witness different program states depending on the

order in which the function was called with respect to other functions in a contract.

Important transactions, whose order of executions determines the consistency of

operations, can fail as a consequence. See Figure 2-1 for an example.

∙ State change after execution (StateChange) Solidity and the EVM does

not support concurrent programming in that, when an external contract is called

from within a contract, control-flow switches to the callee. As a consequence, if

the callee code does not execute as expected, the function call gets stuck forever.

If critical logic is coded after such a function call in the calling function, those

lines of code may never get executed. Unaware of the implications of such a design

constraint, programmers write critical sections of their codes (say, updates to an

account balance) after such calls to external functions without proper exception

handling. Figure 2-2 shows an example. A number of attacks have exploited this

vulnerability.

Vulcan also addresses Integer Overflows, Underflows (IntUnOv). While not

unique to Solidity or blockchain and DSLs, these are vulnerabilities that arise when

the result of an arithmetic operation is larger than the word-size assigned by EVM.

See Figure 2-3 for an example. See Luu et al. [16] for detailed examples of how each

of these language defects have been exploited in vulnerabilities leading to substantial

financial losses.
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2.3 Existing methods of vulnerability detection for

Solidity

Three tools of considerable sophistication exist for detecting vulnerabilities in Solidity -

Manticore [17], Mythril [19], and Oyente [16]. We evaluated all three and found only

Mythril to be maintained by an active community. It uses symbolic analysis, which

uses a SAT-solver to find erroneous program states [8]. While it is easily to use

this tool, it is non-trivial to design and develop it. It requires experts who intimately

understand the nuances of Solidity and are able to encode erroneous states as asser-

tions, and requires sophisticated software design that explores simulations of different

program states. It took a core group of expert developers multiple months to put

together Mythril. Using Mythril as our standard, we evaluate whether the methods

we introduce in this work can achieve similar detection capabilities.
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Chapter 3

Representation Design

Our goal is a representation that will help us infer what a line means so that it is

possible to classify it containing a vulnerability or not. The representation must

capture the definitions of the different tokens that appear in a line and the context in

which the line is executed. If a right hand side token is a variable, the representation

will have to chain backward to retroactively include the meaning of the line where

that variable is defined, and the context of that definition, e.g. whether it is within

a loop or if statement.

We design a network architecture that transforms the input representation of

each line into a continuous valued vector 𝑣 of some fixed dimension, 𝑡. The vectors

of lines that are similar in meaning to each other should be close to each other in

the vector space. This allows supervised machine learning models to pinpoint an

accurate discriminatory boundary between label (presence, absence of vulnerability)

classes during training.

Walking through a simple program snippet illustrates how a line can be repre-

sented. The program snippet in Figure 3-1 describes function foo. Variable r is

updated in a loop, while variable y is updated on line L3. Both are used in line

L4. How should we represent the meaning of variable x on line L4: 𝑥 = 𝑦/𝑟, thus

representing L4 itself? We know that L4 updates variable x and this new value of x

depends on variables y,r which are operands of a division operation. To represent

this division expression, we need the values of y and r. What, at L4, are the values

23



Figure 3-1: An example code snippet. We show how different tokens and their depen-
dencies can be represented. Paths comprising the nodes of a program AST represent
both control and data information. Here, paths 𝒫𝑟,𝒫𝑦 connect the usages of variables
r and y on line L4 to their respective updates on lines L2 and L3.

of these variables? While these cannot be fully determined through static analysis, it

is possible to go back to the line where each variable is most recently defined or up-

dated, as well as to identify its control context. We refer to this process as retrieving

the define and context information, respectively. The simple example is backtracking

y and finding its most recent definition/update on L3. The assignment statement is

not surrounded by control context that would influence the update of y. The more

involved example is backtracking r. It is updated on L2 where r’s assignment is in

the control context of a loop. We have one more detail to consider: the right hand

side of expressions which assign a value to y and r have prior definitions and contexts.

Thus, we have to recursively represent these until we finally recurse to the base case

of their first definition, which we can express directly.
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In Chapter 5 we will use the AST of the program to extract this context by

capturing the path between the two lines, and use a recursive algorithm to obtain a

representation for the entire line L2.

Because operators are predefined we simply directly encode them with an arbitrary

fixed representation that differentiates each from all others (a one-hot encoding).

Beyond this simple example, we need a way to encode function calls. They are

effectively operators. If L4 was instead x = y/bar(r), for some function bar, we

consider two cases: (a) bar is an in-built library, or (b) bar is a user-defined function.

We treat calls to in-built libraries the way we treat operators - directly encoding

them with a representation. We treat user-defined functions as a variable whose

previous definition was the return statement in the function call. Hence, for a line x

= y/bar(r), we would, in all, encode the values and contexts of four tokens: y, /,

bar, and r.

Algorithm 1 sketches this recursive enumeration routine to gather the (prior)

definition and context of each token in a line. In the Methods chapter (Chapter 5),

we follow up by describing our network architecture and show, in three steps using a

staging of neural networks, how a line is transformed starting from source code into

𝑣.
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Chapter 4

Related Work

We present works related to our approach. There are two aspects we cover - works

which have explored different representations for programs, and works which have

dealt with detecting vulnerabilities. We summarize these works in Table 4.1.

4.1 Program Representations

Vulcan is related to other “Big Code” approaches that use AST-based representations

to reason about programs. These works, like Vulcan, process a static view of programs

while ignoring any run-time related phenomena like aliasing and dynamic dispatching.

Bielik et al. [7] correct improper variables names using probabilistic graphical

models (PGM) of features that express AST edge information. Vulcan, in contrast,

employs a neural architecture to represent AST edge information thus avoiding learn-

ing and scaling challenges of graphical models.

Both Hsiao et al. [10] and Srikant et al. [27] use program dependence graphs

to reason about code-clone detection and bug finding, or automated assessments,

respectively. They represent an entire program as counts of edge information in the

dependence graphs. They then build 𝑛-gram models based on these counts. Vulcan

instead builds a distributed representation. Given its simplicity and effectiveness, we

re-implemented this approach and use it as a baseline in our work.

Alon et al [6] introduce the notion of paths - a sequence of AST nodes capturing
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the dependencies between different occurrences of a variable appearing in a program.

They use these paths as model inputs and demonstrate the resulting program repre-

sentations are suitable for modeling a variety of tasks. Vulcan also uses this notion,

positioning paths as building blocks in a larger representation scheme.

Allamanis et al and Zhou et al. [4, 32] incorporate AST edge information in

the graph neural networks they use to model programs. The bi-LSTM of Vulcan

has same inductive bias as a graph neural network because both specifically model

the recurrent structure of the input. Graph modeling approaches do not naturally

support inferring program properties at the granularity of lines because their atomic

unit is a token which leads to averaging the representations for each token on a line.

Vulcan is unique in its attention to how tokens and lines are defined by preceding

code and code providing control context. We defer using graph networks in lieu of

bi-LSTMs to future work in order to focus on a comparison with a state-of-the-art

vulnerability classification method which, like Vulcan, reasons on lines of programs.

Reference
Input

Representation
Learning

Algorithm
Prediction

Site Task Language N

Allamanis et
al. [4]

AST edges Gated Graph
Neural Net
(GGNN)

Variables Rename, find mis-
use of variables

Java 2.9M

Alon et al. [6] AST paths Bi-LSTM with
Attn

Function Predict function &
variable names

Java, Py 1.7M

DeepBugs [22] Word2Vec on to-
kens

LSTM Function Predicting bugs Java 1M

Devign [32] AST edges Graph Neural
Network (GNN)

Functions Vulnerability pre-
diction

C 590k

VulDeePecker [14] Gadgets ex-
tracted from
AST edges

Bi-LSTM Line Vulnerability pre-
diction

C 200K

Russell et al. [24] Tokens CNN Function Vulnerability pre-
diction

C, C++ 1.1M

Vulcan (This
work)

AST paths Bi-LSTM with
Attn

Line Vulnerability pre-
diction

Solidity 100K

Table 4.1: A summary of relevant research on data-driven program analysis and vul-
nerability prediction. Input Representation refers to how the input programs were
represented and fed to the Learning Algorithm. Prediction Site refers to the granular-
ity of the program on which the model makes its prediction. N refers to the number
of programs trained on.
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4.2 Vulnerability Detection

Some recent works have focused on detecting and classifying vulnerabilities through

traditional program analysis techniques [31, 20, 26]. They use static analysis and

fuzzing to detect vulnerabilities.

In works employing machine learning, VulDeePecker [14], DeepBugs [22], and Rus-

sell et al. [24] are closest to the design we propose. We discuss them in detail.

4.2.1 VulDeePecker

VulDeePecker [14] employs a bi-directional LSTM to model what they refer to as code

gadgets. Each gadget starts with a line containing manually-identified constructs

(like function and API calls) and lines containing variables which depend on these

constructs, resulting in a set of lines of code governing the construct. Each code

gadget has an associated label which the LSTM learns. A vector representation of

a gadget is obtained by considering lexicalized tokens present in them, thus treating

it as a paragraph containing strings of tokens. The main advantage of Vulcan over

VulDeePecker is that it does not require elaborate gadgets to be designed. Vulcan

extracts simple AST paths without any pre-processing that requires extracting slices

over program dependence graphs. In follow-up work recently published on arXiv

[13], they address two key limitations in VulDeePecker, namely, preparing gadgets for

manually-identified constructs and not accounting for control dependencies. Their

revised approach however again relies on an elaborate pre-processing step to identify

gadget like code-blocks of interest, something which our approach does not need.

4.2.2 Russell et al.

This work [24] deals with C and C++ programs. They too use static analyzers to

obtain their ground truth labels. However, they train a CNN on a bag of lexicalized

tokens and then use a Random Forest classifier to predict whether an entire function

contains a vulnerability or not. Our work instead focuses on line meaning. The

features which our model learns contain control and data flow information between

29



variables, a much richer set of features as compared to lexicalized tokens. We present

models learned on a bag of tokens as a baseline to compare our model’s performance

against.

4.2.3 DeepBugs

The representation used in this work [22] to detect bugs is token-level embeddings.

These embeddings push tokens within a similar context close to each other in the

chosen vector space. The work does not capture any dependency based information in

an overt way through its underlying program graphs in any systematic way. Further,

we were motivated to develop a method for a relatively low-resource setting, and

hence chose to work with Solidity, a fairly recent programming language, where the

number of usable scripts was in the order of 500K. DeepBugs trains on an order of

a million samples. The architecture we propose does not require the magnitude of

training data needed to learn unsupervised token embeddings.
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Chapter 5

Method

Figure 5-1: Overview of Vulcan. It uses the example of Figure 3-1. The inputs are
the line of interest, i.e. L4, and the AST of the program. A representation for L4 is
computed, which is assigned to be variable x’s representation for its subsequent uses,
and is used by a classifier to predict whether that line has a vulnerability. In Stage 1,
we backtrack to the line where a variable used on the current line was most recently
defined. In Figure 3-1, variables y and r were updated at L2 and L3. The path
from the AST, expressing context in terms of control and data dependencies between
line of interest and the most recent definition line, is then extracted. Each path, a
sequence of length 𝑠, is then passed, one at a time, to a bidirectional LSTM with
dot-product attention to obtain its continuous-valued representation of dimension q.
These intermediate context representations are notated as 𝑅𝐶(·). In Stage 2 context
representations 𝑅𝐶(·) of all tokens are concatenated and passed through a feed for-
ward network FFN_A to obtain an intermediate representation (denoted in blue). In
Stage 3, the intermediate representation is concatenated with the define representa-
tions (notated as 𝑅𝐷(·)) of all the variables, and representations of operators. This
concatenated vector is then transformed to a representation of dimension t using a
feed forward network FFN_B, which is the final representation for line L4, 𝑅(L4 ). See
Algorithm 1 for details. This is then passed to a classifier FFN_C to produce a binary
value indicating presence of vulnerability
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5.1 Overview

We describe our neural network architecture in this section. It consists of three stages.

The input to the system is a line of the program in which a value is assigned, and

its output is a distributed representation for the line which is used to predict a label

for the line. When training the model, this line is accompanied by a label. Each

line, in the order it appears in the program, is provided to the system one after the

other. We provide dimensions for intermediate and final outputs of the architecture

in Figure 5-1. This architecture is sketched in Algorithm 1.

5.2 Stage 1

The input to Stage 1 is a tokenized line of code and the corresponding abstract syntax

tree (AST) [1] of the entire program. This stage retrieves tokens from the input line

and prepares a representation for each one. Tokens here are variable names, function

names, and operators.

Any operators or calls to library functions are represented with one-hot encoding

over the space of such tokens seen in the training set. An UNK is used to handle out

of sample tokens. User-defined functions are treated as variables, and are dealt with

as described below.

A variable requires a pair of representations - define and context. For the first,

we backtrack to identify the line of its most recent definition. We refer to this line

as the variable’s end-point. We retrieve the end-point’s recursively computed define

representation. This is an inter-procedure computation, and the base case is the

variable’s very first definition in the file. This representation is added to a list of

define representations which is saved for later use in Stage 3. Hence, for each variable

on the line of interest, we obtain a corresponding define representation.

For the context representation, our goal is to provide context with respect to the

variable’s most recent definition. We express the control flow that influences the

variable, and the context of operators where it is an operand. For example, the loop
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enclosing the variable r in L2 in Figure 3-1 which exerts a control dependency, and

the binary operator / on L4. Conveniently, these control and context dependencies

are expressed by the program’s AST via the AST path between the variable and its

end-point. For example, in the snippet, for r in L2, we can use the path 𝒫𝑟 where,

in addition to the explicit data dependency modeled by the path when connecting

to its usage in L4, the nodes LOOP, BinOp come up in the path as well. No other

pre-processing or program slicing is needed to obtain this information.

5.3 Stage 2

The context of this variable, now a (context) path, is a variable length sequence of

tokens. We next transform each variable’s (context) path to a fixed length repre-

sentation by means of a recurrent neural network. We select a bi-directional LSTM

network to account for possible long range dependencies in the sequence [11] (Network

LSTM in Figure 5-1). The LSTM network includes a dot-product attention mechanism

[15] because it has been empirically shown to improve modeling of sequences.

We append the output of the LSTM to a list of the context representations for

line of interest. Once all context paths, corresponding to each token on the line of

interest, have been transformed, we pass this list through a simple feed forward model

to obtain a single, fixed length representation of all the contextual information related

to the line of interest (Network FFN_A in Figure 5-1).

5.4 Stage 3

The role of the next stage is to assemble the constituents of the line of interest. They

comprise one-hot encodings for the operators, the context representation (Stage 2) and

the list of define representations corresponding to end-points of each of the variables.

We use a feed forward neural network to transform the aggregation into a final fixed

length representation (Network FFN_B in Figure 5-1). It is this final representation

of the line of interest we feed into a classifier for our downstream inference task of
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vulnerability detection. See lines 14, 15, 22, 24 in Algorithm 1 for how the line

representations at end-points (which are the define representations) are used to form

the final representation of line of interest.

Classifier Learning. Vulcan detects vulnerabilities on a given line of a Solidity

smart contract. The final line representation produced by Stage 3 above is input to

a feed-forward network that predicts the label - vulnerability or not (Network FFN_C,

Figure 5-1). A cross-entropy loss between the predicted and true label trains the

parameters of the entire architecture. Details on the dataset and the task setup are

provided in the following section.
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Algorithm 1 Algorithm to obtain line representations.
1: procedure RepresentLine(L, ast)
2: ◁ L: Line number of current line in program P
3: ◁ ast: AST object of program P
4: ◁ Returns a 𝑡-dim representation of L
5: ◁ Obtain RH tokens of expression on line L
6: tokens← 𝑅𝐻𝑆(L)
7: defn_rs, cntxt_rs← [ ], [ ]
8: for tok ∈ tokens do
9: (ep, pth) ← GetPath(tok, L, ast)

10: ◁ Generate define representation (𝑅𝐷(·), Fig 5-1)
11: if pth ∈ ∅ then
12: defn_r ← random(𝑑𝑖𝑚 = 𝑡)
13: else
14: if ep ∈ ∅ then
15: defn_r ← pth ◁ One-hot-code of tok
16: else
17: defn_r ← RepresentLine(ep, ast)
18: defn_rs ← [defn_rs defn_r]
19: ◁ Generate context representation (𝑅𝐶(·), Fig 5-1)
20: ◁ See Fig 5-1 for LSTM, FFN_A, FFN_B
21: cntxt_r← LSTM(pth)
22: cntxt_rs ← [cntxt_rs cntxt_r]
23: ◁ Generate context representation ∀ tokens on L
24: cntxt_rs← FFN_A(cntxt_rs)
25: ◁ Variable-length line representation
26: line_rs ← [defn_rs cntxt_rs]
27: ◁ Transform to fixed-length line representation
28: line_rs← FFN_B(line_rs)
29: return line_rs

1: procedure GetPath(tok, L, ast)
2: ◁ tok: Token on line L in program P
3: ◁ L: Line number of current line in program P
4: ◁ ast: AST object of program P
5: ◁ Returns ep, the end-point– line number of most recent define of tok, and pth,

path from ep to L
6: if tok ∈ operators OR tok ∈ built-in func then
7: ep ← ∅
8: pth ← one-hot-encoding(tok)
9: else

10: if t ∈ user-defined func then
11: ep ← line with return in tok’s definition.
12: else
13: ep ← line where tok was last defined. ∅ if

no previous definition exists.
14:

15: pth ← path in ast between token tok on line L and line ep.
∅ if no previous definition exists.

16: return ep, pth
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Chapter 6

Experiment Setup

6.1 Dataset

We scraped publicly available Solidity programs from https://etherscan.io. As

of May 2018, we scraped 28, 052 verified source files - files verified by Etherscan to be

source codes corresponding to their byte codes available on the Ethereum blockchain.

25, 813 of them were compilable. Among these, we selected only those which had

at least two transactions recorded on Ethereum. This served as a proxy for filtering

contracts involved in genuine transactions. We were left with 19, 023 files. In total,

these files contained 69, 599 contracts, and a total of 487, 873 lines of code. Further,

we removed programs which were two standard deviations away from the corpus

median in program length, and removed duplicates, reducing the total set to 194, 988

lines of code.

6.2 Labeling

Given the aim of this work is to evaluate a deep learning approach to program repre-

sentation and vulnerability detection, we used Mythril [19], an open-source, symbolic

analysis based vulnerability detection tool for smart contracts as a source of labels.

Mythril provides line numbers of the vulnerabilities it detects. Lines not flagged by

Mythril are considered benign. Our dataset had a total of 573, 251 lines of code. Of
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these, 12, 523 (∼ 2.2%) were flagged as vulnerabilites by Mythril. The distribution

of the three vulnerabilities StateChange, TOD, IntUnOv were 2750 (22%), 4830 (38%),

and 4943 (40%) respectively. In our modeling process, each line of with code within

every function was considered as an input to the model.

6.3 Implementation Details

All our experiments are set up as binary classification tasks. We employ a weighted

cross-entropy loss measure and sub-sample data from the training set to account for

the highly uneven distribution of labels (details provided in the next subsection). For

the attention mechanism, we implement Luong et al.’s dot-product attention.[15] We

implemented all our models using PyTorch version 1.0. To ensure that all batches

are of the same size, we limit the number of lines in a program to 128, number of

variables in a program to 16, and the length of each variable’s path to 32. These

numbers are manually selected after observing their distribution on the train-set.

The context and define representation dimensions (q and t in Figure 5-1) are 256 and

128 respectively. We use Adagrad as our optimizer and apply batch normalization.

A URL to our source code will be released in the final draft of our work.

6.4 Error Metrics

We use five error metrics to measure how well our classifier does, the same used by [14]

- False positive rate (FPR = 𝐹 𝑃
𝐹 𝑃 +𝑇 𝑁

), False negative rate (FNR = 𝐹 𝑁
𝑇 𝑃 +𝐹 𝑁

), Recall

(R = 𝑇 𝑃
𝑇 𝑃 +𝐹 𝑁

), Precision (P= 𝑇 𝑃
𝑇 𝑃 +𝐹 𝑃

), and F1-score (2×𝑃 ×𝑅
𝑃 +𝑅

) to evaluate how well

our classifiers perform. Since we have much fewer vulnerable samples than benign

samples, we want our classifier to be as precise as possible. Hence, what is desirable

is low FPR and FNR, while having high recall, precision, and F1-scores.
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Chapter 7

Experiments & Results

We investigate Vulcan’s performance as a vulnerability classifier using the metrics

described in Chapter 6.4, and understand its components’ contribution to its perfor-

mance.

7.1 Research Question 1.

The first research question we investigate is -

RQ1. Is Vulcan capable of detecting and flagging vulnerabilities in lines of

programs?

Per Table 7.1, Vulcan has an F1-score of 60% compared to its closest and state-

of-the-art approach Vuldeepecker, for which we train a model we call VULD-DeepLrn.

VULD-DeepLrn has an F1-score of 51%. To obtain this comparison, we did our best

to implement the Vuldeepecker approach as described in [14, 13] while applying the

design to vulnerabilities in Solidity.1 We heuristically identified arithmetic opera-

tions and function calls as key points, which the authors define to be “hotspots" for

vulnerabilities. From these points, slices are made to generate code gadgets which

are described by the authors as snippets of code which are inform or depend on the

variables that interact at key points. We also observe that Vulcan’s precision is bet-
1We did not communicate with the authors.

39



ter by 15% when compared to VULD-DeepLrn’s, whereas the recall of both models is

roughly equivalent.

Model F1 P R FPR FNR

Vulcan (This work) 60 (3) 59 60 2 40
VULD-DeepLrn 51 (2) 44 63 1 37
Tok-as-BOW 5 (0) 3 36 46 64
Only-AST-Nodes 18 (0) 10 70 22 29
Only-AST-Paths 30 (0) 61 20 0 80
VULD-LogRegr 23 (0) 17 35 1 65
Vulcan-NO_ENDPTS 52 (1) 45 60 3 40
Vulcan-PREV_LN 53 (3) 53 53 2 47
Vulcan-NO_ATTN 52 (2) 54 51 2 49

Table 7.1: Vulnerability classification of different models evaluated in our work. All
values are percentages rounded to the nearest integer. This is a binary classification
task of classifying whether a line has a vulnerability or not. The results are an average
of 5 independent runs each. P, R stand for Precision and Recall respectively. For
readability, we show standard deviations in brackets (·) only for F1-scores.

We expected Vulcan and VULD-DeepLrn would perform similarly. In principle,

both approaches attempt to express similar information in programs. The relatively

superior performance of Vulcan is likely due to a shortcoming in our implementation

of Vuldeepecker. This shortcoming is prone to arising because of the complexity and

heuristic judgement Vuldeepecker demands. Vulcan, in contrast, requires far fewer

design decisions. For instance, Vulcan does not need the manual effort required to

identify key points to compute gadgets. Further, Vulcan uses AST paths, while cal-

culating gadgets requires program slicing. Vulcan achieves as much as Vuldeepecker

while being a superior, seamless deep learning solution.

Reasoning at the granularity of lines is demonstrably hard as evidenced by Ta-

ble 7.1’s results overall. They further indicate that it demands a representation which,

at least, accounts for the dependence information of the constituent tokens. Tok-as-

BOW, a naïve baseline model of a bag of words of just the tokens appearing in a line,

does not discriminate presence of vulnerabilities (F1-score of 5%). In Tok-as-BOW, a

dictionary of all the unique tokens appearing in each line is populated and a count

matrix is prepared, where each row corresponds to a line of program and the columns

40



correspond to the set of unique tokens seen in the training set.

Figure 7-1: How informative are line representations? We set up three cate-
gories of synthetic Solidity programs containing 50 programs each. Categories NO-
MOD-DEP and MOD-DEP modify unique programs in category BASE in a controlled
and specific manner (details in Chapter 7.2.4). We compare the representations of
specific lines of interest in programs from each of these categories as computed by a
trained Vulcan. We compare the average 𝐿2-distances of these representations among
the three categories (right). Larger values indicate the representations are farther
apart.

We also note that both Vulcan and VULD-DeepLrn perform modestly on the task

of vulnerability classification. There is significant room for improvement. There could

be several issues at play here. Two of the vulnerability classes in our dataset exploit

Ethereum’s complex, concurrent architecture. Their precise meaning is tricky to

express. Further, the dataset suffers from a class imbalance; just under two percent

of the dataset is labeled with a positive class. Because this imbalance should be

expected of real-world data, building models and techniques to deal with such settings

is an important direction of future work.

Related to model performance improvement, very recent contributions in NLP

[21, 18] have shown that high performing models similar to Vulcan’s end up learning

spurious correlations. The NLP community is currently engaged in asking how to

effectively probe such models and how to prevent this ‘memorization’[29]. Along

with a push for performance improvement, our community should be wary of similar

outcomes. The community should pursue equivalent probing and design of program

modeling tasks that specifically answer whether a model truly comprehends, rather

than spuriously correlates, its training corpus.
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7.1.1 Predictions missed by Mythril

In this work, we consider detections made by Mythril as the gold-standard and use

them to train Vulcan. However, given we found that Mythril and the two other tools

we examined had label disagreement, one might consider that Mythril’s labels are

also prone to error. It could, therefore, be the case that Vulcan learns to distinguish

vulnerabilities which Mythril does not identify. To investigate this, we manually

evaluated 60 lines of programs out of the 2314 lines that were flagged by Mythril

as being benign but were flagged by Vulcan as containing a vulnerability. These

were out of a total of 49928 lines of programs in the test set. Note - this is not

the same metric as False Negative Rate (FNR) reported in Table 7.1. We found

nine lines out of 60 (∼ 10%) to indeed have a vulnerability, while the rest were

correctly labeled by Mythril. All these programs had the state change after execution

(StateChange) vulnerability in them. This issue had been raised and eventually

fixed by the developers of Mythril in a version ahead of the one we initially used

in our experiments. See https://github.com/ConsenSys/mythril/issues/633 for

details. This is an important, though preliminary, result because it shows how, despite

Mythril being designed with handcrafted conditions, does not recognize all erroneous

conditions. It suggests a need for complementary techniques, such as Vulcan, to

augment manual approaches. Importantly, it indicates that a purely data-driven

method, as demonstrated by Vulcan, is able to learn even with noisy labels.

7.2 Research Question 2.

The second research question we investigate is -

RQ2. What does each component of Vulcan contribute to its performance?

Vulcan has two key components - context and define representations. We investi-

gate their respective contributions to Vulcan’s ability to discriminate vulnerabilities.

We proceed by considering models that isolate representation properties and by ablat-

ing Vulcan. We also investigate whether similar lines have similar line representations
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to lend confirmation that the architecture’s representation space respects similarity.

7.2.1 Are context representations important?

We would ideally want to answer this question by ablating just the context repre-

sentations from the architecture (i.e. omitting cntxt_rs in Algorithm 1). This is

not possible in the current setup since a token’s define representation is recursively

dependent on a line representation that is built from context representations. Hence,

ablating the context representation would affect define representations as well. We

instead train two simple bag of words classifiers using solely the context features to

test whether they are predictive of program information. First, for a model named

Only-AST-Nodes, we evaluate how much just the AST nodes appearing in Vulcan’s

paths, while ignoring other information which the entire sequence of nodes may pro-

vide, are predictive of the final task. We do this by training a bag of words on the

names of unique AST nodes that appear in all of the variables’ context paths seen

training. Next, we train Only-AST-Paths, where we evaluate whether the sequential

ordering of the nodes appearing in the paths adds additional value. We do this by

learning a bag of words on all the unique paths, where a path is a string of AST

nodes, of all the tokens seen in training. This is closest to the representation used by

Hsiao et al. [10] and Srikant et al. [27]. See Chapter 4 for details. Only-AST-Nodes

and Only-AST-Paths have F1-scores of 18% and 30% respectively. These two models

suggest that AST node information and the sequential properties of the paths are

important to the overall predictability.

In the spirit of Only-AST-Paths, we train model VULD-LogRegr, where we learn a

bag of words model using the words extracted from all the gadgets of VulDeePecker

seen in training. This gives a sense of how informative the code gadgets, which express

a superset of the context paths, are by themselves. VULD-LogRegr has an F1-score of

23% placing its performance in between Only-AST-Nodes and Only-AST-Paths. This

ranking could relate to our gadget design choices.
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7.2.2 Are define representations important?

We perform two ablations to our model to study whether the notion of end-points

and their corresponding define representations add to the predictive ability of the

model. First, we ablate the contribution of define representations completely. We

name this model Vulcan-NO_ENDPTS. This corresponds to dropping defn_rep from

being included in line_rep on line 22 in Algorithm 1. We expect ablating this aspect

of the model to negatively affect the overall prediction since the model is left with

only the contextual information present in the paths.

Second, we omit solely the end-points by selecting the define representations of the

previous line instead of representations of the end-points of each token appearing on a

line of interest. We name this modified model as Vulcan-PREV_LN. This corresponds

to ep being assigned to L-1 (line preceding L) on lines 11 and 13 in function GetPath

in Algorithm 1. This is a tighter ablation as compared to Vulcan-NO_ENDPTS which

compares the effect of just the end-point and its define representations.

Vulcan-NO_ENDPTS and Vulcan-PREV_LN have F1 scores of 52% and 53% re-

spectively. This implies that the dependence information Vulcan captures of tokens

appearing on a line of code accounts for a large part of its performance, as it rightly

should. Comparing Vulcan-NO_ENDPTS and Vulcan-PREV_LN suggests that end-

points are approximately as informative as previous lines. This merits future investi-

gation to confirm if this lack of difference is seen across other tasks.

Overall, we find that the context and define representations we present in this

work are important and contribute to the model’s overall prediction.

7.2.3 Is attention important?

We also evaluate whether the dot-product attention in Vulcan is effective. We name

this ablated model Vulcan-NO_ATTN. This model has an F1-score of 52% versus

Vulcan’s F1-score of 60%. This worse value is expected because empirically, it has

been shown that attention improves accuracy across most model architectures [28, 25].

We defer investigating the interpretability provided by attention to future work.
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7.2.4 How informative are line representations?

In designing Vulcan’s architecture, our goal is finding distributed line representations

that are similar for lines with similar contexts, and dissimilar for those without. To

experimentally evaluate whether this is achieved, we set up the contexts of the tokens

appearing in the lines of interest to be vastly different, while the lines themselves are

identical. To proceed, we hand-craft three categories of simple Solidity programs -

1. BASE. In this category we set up unique programs, each with a line of interest

containing multiple tokens. One of these tokens is defined to have an update in a

specific context, e.g. in a loop or within an if-branch, while arbitrary code can exist

between the line of interest and the line of update of one of its tokens. For example,

in Figure 7-1, the line of interest is L2, where variable z is updated in a loop before

L1.

2. MOD-DEP. To set up programs in this category we first replicate the programs

in BASE. Then each program is modified in a way which retains its overall structure

but which changes variables by renaming them in the line of interest, operators by

substitution and the quantity of arbitrary code by insertion or deletion. For instance,

in the program in MOD-DEP in Figure 7-1, variables are renamed in the line of

interest, the choice of specific arithmetic operators on the lines are changed, and the

amount of arbitrary code (in blocks 1, 2) varies.

3. NO-MOD-DEP. To set up programs in this category we again first replicate the

programs in BASE. Then each program in NO-MOD-DEP is left to be identical to its

counterpart in BASE except that we modify the control context in which the token is

last updated. For example, in Figure 7-1, the only difference is that variable z is not

updated in a loop anymore (line L1).

We seed category BASE with 20 unique programs, with randomly inserted con-

texts and lines of interest. These then have one corresponding modified program each

in categories MOD-DEP and NO-MOD-DEP. The lines of interest from each of these

60 (20×3) programs are the inputs to Vulcan after training. We extract line represen-

tations from our trained Vulcan and compute the 𝐿2-distance between corresponding
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lines of corresponding programs across BASE, MOD-DEP and NO-MOD-DEP. We

tabulate the average 𝐿2-distance across the data and we observe the distance be-

tween programs in categories BASE vs. MOD-DEP, to be much less than in categories

BASE vs. NO-MOD-DEP, and MOD-DEP vs. NO-MOD-DEP. Corresponding lines in

programs in BASE vs. NO-MOD-DEP and MOD-DEP vs. NO-MOD-DEP should in-

deed have the farthest representations since the contexts of the tokens appearing in

the lines of interest are vastly different, despite the lines themselves looking iden-

tical. Additionally, the difference between the averages of BASE vs. NO-MOD-DEP

and MOD-DEP vs. NO-MOD-DEP is not significant, further suggesting that repre-

sentations of the lines of interest of programs in BASE and MOD-DEP are similar.

This shows that the representations our models generates capture the contexts of the

tokens appearing in it.
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Chapter 8

Conclusion and Future work

We introduce Vulcan, a novel neural architecture to construct distributed represen-

tations for lines of programs. We use these to classify whether a line of a Solidity

program has a vulnerability in it or not. We show that Vulcan compares favorably

with a state-of-the-art line-level classifier but which involves significant pre-processing

steps. Further, we show, through ablations, that the different components which make

up our architecture contribute to the model’s performance and are necessary. We also

show experimentally that Vulcan generates similar representations for lines of similar

meaning. A promising direction of research having demonstrated a system like Vul-

can is to serve other nascent languages with with insufficient detection tools and a

developer community. Models trained using domain adaptation techniques on Vulcan

can aid in inferring properties of the language while circumventing the need to have a

large corpus of labeled data. We also provide one possible answer to the larger ques-

tion of what the right representation ought to be when reasoning about programs

statistically. Understanding these alternatives will lead us to truly leverage and scale

a data-driven approach to analyzing and generating programs.
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