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ABSTRACT

The evolution of advanced persistent threats (APTs) spurs us to

explore computational models of coevolutionary dynamics aris-

ing from efforts to secure cyber systems from them. In a first for

evolutionary algorithms, we incorporate known threats and vulner-

abilities into a stylized "competition” that pits cyber attack patterns

against mitigations. Variations of attack patterns that are drawn

from the public CAPEC catalog offering Common Attack Pattern

Enumeration and Classifications. Mitigations take two forms: soft-

ware updates or monitoring, and the software that is mitigated is

identified by drawing from the public CVE dictionary of Common

Vulnerabilities and Exposures. In another first, we quantify the

outcome of a competition by incorporating the public Common

Vulnerability Scoring System - CVSS. We align three abstract mod-

els of population-level dynamics where APTs interact with defenses

with three competitive, coevolutionary algorithm variants that use

the competition. A comparative study shows that the way a de-

fensive population preferentially acts, e.g. shifting to mitigating

recent attack patterns, results in different evolutionary outcomes,

expressed as different dominant attack patterns and mitigations.
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1 INTRODUCTION

Advanced Peristent Threats (APTs) are a class of severe and sophis-

ticated cyber threats perpetrated by known groups of actors, who

have been identified by the tactics, techniques and procedures they

typically use. While advanced persistent threats (APTs) continue

to defeat common cyber defenses, community action is constantly

improving the hand of defenders. One kind of community action

occurs when victims of APTs go beyond recovering from an attack,

onto deciphering who may have harmed them, how that harm

was inflicted, and where it was targeted. Motivated by the value

of sharing information, victims disclose their experiences publicly

through a number of government and industry reporting outlets.

Large repositories of potential threats, systematically compiled

from attack reports preemptively warn the entire security com-

munity. Specific repositories, e.g. ATTACK™, reporting Advanced

Persistent Threats (APTs), CAPEC, cataloguing APT Attack Patterns,

and CVE, enumerating observed examples of vulnerabilities tar-

geted by Attack Patterns, are being used in a variety of ways, see

CAPEC use cases [15], though not yet by evolutionary computation.

[12–14].

Evolution of APTs and other cyber threats is well documented

by the security community [2, 3, 7, 24]. To study this phenomena

through modeling, we choose to use competitive coevolutionary

algorithms [21] because they are well-suited to move from obser-

vations to studies providing understanding. This phenomena is

interesting to model because deciding which parts of a system to

patch while maintaining network operations is a problem with a

large search space that is currently solved manually by human

experts. Our first challenge is to ensure competitions are effective

abstract models and simulations of coevolutionary interactions

that occur between cyber analogs to the algorithm’s definitions

of the adversaries. Therefore, we formulate competitions featur-

ing a set of attack patterns versus a set of mitigations. To search

through variations of attack patterns and mitigations the algo-

rithms incorporate, for the first time, public APT and vulnerability

resources, specifically the CAPEC catalog and the CVE dictionary.

The CAPEC catalog enumerates a search space of APT attack pat-

terns and the CVE dictionary enumerates software that is the focus

of mitigations.

Our second contribution is to formulate different abstractions

of generally described evolutionary APT dynamics to understand

https://doi.org/10.1145/3449639.3459351
https://doi.org/10.1145/3449639.3459351


GECCO ’21, July 10–14, 2021, Lille, France Michal Shlapentokh-Rothman, Jonathan Kelly, Avital Baral, Erik Hemberg, and Una-May O’Reilly

how contrasting preferences lead to different outcomes. First, we

align a standard coevolutionary algorithm, Coev, with an abstract

description of attack patterns coevolving back and forth with mit-

igations. Next, we align a previously introduced variant of a co-

evolutionary algorithm named LS_Coev with an abstract descrip-

tion where evolving defenders react more slowly than attackers.

Finally, motivated by observations about publicity around new at-

tacks, and the urgency of these attacks, we design a variant named

Recent_Coev that aligns to defenders adaptively selecting miti-

gations that counter the most recently popularized attack, while

attackers adapt to the least vulnerable networks most recently

observed. We combine the competition and algorithm variants in

a system called EvoAPT to enable modeling.

We proceed as follows. In Section 2 we describe how we set up

EvoAPT’s algorithmic components to model APT evolution. Sec-

tion 3 contextualizes our work with closely related cybersecurity

modeling and simulation approaches also using competitive co-

evolutionary algorithms. Section 4 describes our simulation setup.

Section 5 presents the results. Section 6 concludes.

2 MODELING

In this section we describe APTs and how we set up our algo-

rithm components: competition and competitive coevolutionary

algorithm variants to model APT evolution. Our system for explor-

ing the variants with the competition is called EvoAPT.

2.1 Advanced Persistent Threats (APTs)

APTs are a class of severe cyber threats perpetrated by known

groups of actors, (called APTs as well), who have been identified by

the tactics, techniques and procedures (TTPs) they typically use [2].

One recent and prominent example of an APT is Solarigate [4]. A

cyber security firm, Fireye, discovered this global intrusion cam-

paign, that compromised their own networks and exfiltrated their

intellectual property. They identified a supply chain attack tro-

janizing SolarWinds Orion business software updates. The trojan

in turn distributed malware called SUNBURST. Sunburst used a

compromised software component to use SolarWinds’ Orion to

detect and in some cases attempt to disable defensive software

running on targeted systems. If any of an extensive list of processes

was found to be running, the component shut down completely

until called again [26].

Post compromise, the attackers were able to leverage multi-

ple techniques that helped them evade detection for over a year

and obscure their malicious activity. The Solarigate campaign is

widespread, affecting public and private organizations around the

world.

As noted in the Solarigate example, an APT is deployed as a

campaign. A campaign consists of multiple steps, taken over long,

irregular time intervals, each in a stealthy way. We align a list

of attack patterns with a step of a campaign. Attack patterns can

be found in the CAPEC catalog which tracks, via external links

to the CWE, the software weakness they target, and, from the

CWE entries, the vulnerable software applications they have previ-

ously targeted. For example, using BRON [6], the affected software

targeted by an attack pattern named CAPEC-17, entitled “Using

Malicious Files” can be retrieved. An attack of this type exploits

a system’s configuration to allow an attacker to directly access

an executable file, e.g. through shell access and has targeted web

browsers. BRON follows the links from CAPEC-17 to all of its entries
in the CWE. For example, one weakness is CWE-264: Permissions,

Privileges, and Access Controls. BRON then follows all links from

each weakness to CVE entries. Each is a vulnerability, e.g. there is

one named CVE-2011-1185, and each entry in the CVE dictionary

lists software configurations, in Common Platform Enumeration

(CPE) format, that have been actually exploited by CAPEC-17. One
example is cpe:2.3:a:google:chrome:*:*:*:*:*:*:*:*, up to

(excluding) version 10.0.648.127 of Google Chrome.

We can consider the general class of attack patterns analogous

to a species, and the entries in the CAPEC catalog to be explicit

variants of attack patterns. These attack pattern variants exhibit

differences in terms of how many examples of vulnerabilities they

have attacked (equivalent to the number of CVE entries linked to

them) or how many configurations they affect.

On the defensive side, one general approach to APTmitigation is

updating the software of a vulnerable application or operating sys-

tem. This is intended to be preventative, but in some circumstances,

is neutral or even worse. A second approach is needed when updat-

ing software is infeasible, e.g. when an operating system is running

applications which don’t have versions supported by the update

or an application has no update. For these cases, monitoring is de-

ployed to watch for the stealthy activity of the attack. Monitoring,

also called sensing, is arguably better at preventing harm from an

attack but it is often costly because it involves collecting lots of

data where the signal revealing the attack is very weak. We model

both these approaches to mitigations. To vary what software is

mitigated prior to an attack, we reference the CVE dictionary.

2.2 Competition

The competition in the threat scenario used by our competitive

coevolutionary algorithm variants is formulated as follows:

• An attack is a list of attack patterns and vulnerabilities. The

search space of attack patterns is the CAPEC catalog and CVE

dictionary. Entries in the catalog are linked via the CWE (Common

Weakness Enumeration) catalog. Because different attack patterns

can link to a common CWE entry, attack patterns overlap in terms

the vulnerabilities they have been observed to attack.

• A defense is a list of two kinds of mitigations: monitor or

update, targeted on a node or software. Monitoring mitigations is

more costly than updates but more assured to help. A defense has

a fixed budget. The search space of software to which mitigation

is applied is the CVE dictionary.

• A network, described by its software applications, the nodes

they run on and topology, is the competition environment.

• To simulate a competition, the algorithm “applies” defense

mitigations to the “network” (applying will be explained next) and

then calculates a competition-score assuming the attack occurs

on the mitigated network. The competition-score represents the

potential harm of the attack on the mitigated network.

• To apply a monitoring mitigation to software on a selected

node, the algorithm uses the node’s centrality as a proxy for the
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expense of the logging and analysis. It temporarily changes the

Common Vulnerability Scoring System [17] (CVSS) value to zero.
• To apply a software update as a mitigation, the algorithm

increments the version of the operating system or the version of

the software that has been selected by the defense. This may result

in the updated software’s vulnerability changing and, therefore,

its CVSS. (The mitigation intends the software to be less vulnerable

by upgrading it, but there is no guarantee, the new version is not

itself a vulnerability.)

• To compute a competition-score, the algorithm checkswhether

the attack patterns impact any the network’s software applications

after all mitigations have been applied. This check is performed by

a data collection and retrieval system called BRON [6]. EvoAPT

formats the network’s description in CPE [16] format, a Common

Platform Enumeration standard to make itself interoperable with

BRON. If BRON finds the software application is affected, it re-

turns a value from the CVSS from the CVE entry. Domain experts

assign CVSSs in the CVE dictionary using a free and open industry

standard for assessing vulnerabilities. The CVSS depends on the

accessibility, integrity, and confidentiality of the application and is

in the range of 0 to 10. Note that because attack patterns are linked
to common CWE weakness entries, implying overlap in affected

software applications, the competition-score is not the sum of each

attack pattern’s CVSS, while it is the sum of the CVSSs of all affected
software.

• A population member’s fitness is the sum of competition-

scores over all competitions in which they participate.

2.3 Coevolutionary algorithm variants

Moving to the evolutionary phenomena we want to model, we note

that APTs frequently indiscriminately target large slices of net-

works, not necessarily because they are ideal targets, but because

they, in general, could be. On the other hand, defensive mitiga-

tions will preventively repel some attacks and not others. Thus we

can model two populations where the members of each compete,

with our formulated competition, pairwise against each other, and

the fitness of each member is the sum of the harm that is either

inflicted (a maximizing objective for attacks) or incurred (a mini-

mizing objective of the same quantity: harm, for defenses) over all

a member’s competitions. We note that this basic formulation of

interacting circumstances and many competitions also underpin

prior work such as [20, 22].

A baseline model of dynamics is well served by “standard” or “al-

ternating” coevolutionary algorithm that evolves two populations

with selection and variation using standard selection, crossover

and mutation techniques. One population comprises attacks and

the other defenses. In each generation, competitions are held by

pairing an attack and a defense. Each attack–defense pair in the

competition is assigned a score. Fitness is then calculated as the

sum of competition scores. The populations are evolved in alternat-

ing steps: first, the attack population is selected, varied, updated

and evaluated against the defenses, and then, the same for the de-

fense population. We name this standard coevolutionary algorithm

Coev.

Recognizing that APTs are stealthy and take time to detect,

we include a previously introduced variant of a coevolutionary

algorithm named ‘Lockstep’, that we denote as LS_Coev [9]. It

algorithmically, see Algorithm 1 and Figure 1, evolves in epochs

where, first the attacks evolve multiple generations against a static

population of defenses, then the attacks are locked down, and

defenses evolve against them, though for fewer generations. This

variant is parameterized to control the number of generations each

adversarial population is static or evolving.

Generation 0

Non-Locked (NL) Population

NL

Generation 1 NL

Generation N NL

……

Locked (L) Population
L L L

L L L

L L L

…

Figure 1: Lockstep coevolutionary algorithm.

Algorithm 1 LS_Coev

1: procedure PopulationStep(population, parents_size, adversaries)
2: parents← TournamentSelection(population, parents_size)

3: new_individuals← Variation(parents)

4: for individual in new_individuals do

5: individual.fitness← AvgFitness(individual, adversaries) ⊲MEU solution concept

6: population← GenerationalReplacement(new_individuals, population)

7: procedure LockstepCoevolution(populations, generations, locked_population_parents)

8: 𝑡 ← 0
9: best_individuals← ∅
10: while 𝑡 < generations do ⊲ Run for # generations

11: locked_pop← populations
locked

12: nonlocked_pop← populations
nonlocked

13: 𝑡′ ← 0
14: while 𝑡′ < locked_pop_generations do ⊲ locked population evolves against fixed

adversary population

15: PopulationStep(locked_pop, sizeof(locked_pop), nonlocked_pop)

16: 𝑡′ ← 𝑡′ + 1
17: PopulationStep(nonlocked_pop, sizeof(nonlocked_pop), locked_pop)

18: PopulationStep(locked_pop, locked_population_parents_size, nonlocked_pop)

19: best_individuals← ExtractBest(populations)

20: 𝑡 ← 𝑡 + 1
21: return best_individuals ⊲ Returns best solutions found

Finally, Solarigate illustrates that, once an APT is found, the en-

tire community should try to find and address it within their own

enterprise. Therefore, we design a variant named Recent_Coev.

Recent_Coev proceeds with two evolving populations, attacks,

A = 𝐴1, .., 𝐴𝑛 , and defenses, D = 𝐷1, ..., 𝐷𝑛 , plus a single “recent”

attack, 𝐴𝑅 and a single “recent” defense mitigation, 𝐷𝑅 . In a gen-

eration, the attacks are evolved then competed against 𝐷𝑅 and

the defenses are evolved and competed against 𝐴𝑅 . Then, the algo-

rithm assigns 𝐴𝑅 the best performing attack 𝐴∗ and 𝐷∗ the best
performing defense before executing the next generation. In this

way, both populations are always evolved against the most recent,

most effective adversary.

3 RELATEDWORK

Table 1 presents EvoAPT and earlier projects that applied coevolu-

tionary algorithms, including modeling, to cyber security settings.

The information in the table focuses on the coevolutionary algo-

rithm used, the cyber security environment, the cyber security
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topic, attack behaviors, defense behaviors, model evaluation envi-

ronment and objective.

Systems in Table 1 vary in terms of realism, though they are

all models and models are by definition simplifications of real-

ity. One basis of realism is whether a system runs actual attack

code (aka malware) like a threat-actor does. On this basis, RIVALS-

Deception [20] runs attack code (when it runs nmap to reconnais-
sance scan). In the middle of the spectrum of realism, RIVALS-

DDOS [20] runs code that models a DOS attack, rather than exe-

cute DOS malware. On this basis, EvoAPT is at the abstract end of

the spectrum. While CAPEC attack patterns include code examples

that in the wild, execute as trojan or other malware, EvoAPT does

not execute any form of attack while it does however, represent

real-world attack patterns and draw upon a huge catalog of them.

On the basis of types of behavior being modeled, EvoAPT, like

CANDLES [22], (row 1, Table 1), investigates an abstraction of

behaviors that differ from investigating “data features”, like, e.g.

AIS-TCP [19], (row 6 of Table 1). EvoAPT traces an attack pattern’s

CWE links to all of its CVE entries to identify all of its real-world

observed examples. It quantifies an attack pattern’s harm on the

competition network by consulting the CVSS. The CVSS is a real

world estimate. Collectively, these features make EvoAPT struc-

turally novel among similar systems, and make its approach ab-

stract yet faithful to the meaning of an APT and attack pattern

severity. EvoAPT also uses CPE formatting to support “plug-and-

play” like integration with BRON and formats in the data. This

appears to makes it unique (among entries in Table 1) in using this

global standard widely adopted by the cyber security community.

There is previous work that uses CAPEC, CWE and CVE in-

formation, but not coevolutionary algorithms. For example, the

SEPSES knowledge graph links information from standard data

sources including CVE, CAPEC, CWE, and CVSS [10]. CALDERA
Pathfinder [8] shows what vulnerability is exposed to an adver-

sary based on threats linked via attack patterns from CAPEC. In

addition, the data is also used in examples of modeling includ-

ing situational awareness [11], predicting missing edges between

CVE, CWE and CAPEC [29], and investigating data breaches with

semantic analysis of ATT&CK [18].

4 SIMULATION SETUP

We define the adversarial behavior, objectives, network and experi-

mental parameters in this section.

4.1 Defining the Adversarial Behavior

EvoAPT uses Grammatical Evolution (GE) which is a type of evo-

lutionary algorithm [23]. GE has been used in several adversarial

domains in cybersecurity [5, 22, 25]. It uses a Backus Naur Form

(BNF) context-free grammar and an intermediate interpreter to

map from the “genome” to a “phenome” that expresses an exe-

cutable behavior. Like all EAs, variation occurs on the genome (in

GE, an integer sequence) and fitness depends on the phenome.

We refer to the genome-phenome pair as an individual. In GE the

interpretation step raises locality issues, however the grammar

and the rewriting assure syntactically valid offspring [27]. Experi-

ence indicates that the evolutionary dynamics of GE do not differ

Figure 2: Attack and Defense Grammars

# ATTACK GRAMMAR
<attack> ::= <ap>, <ap>,<ap>, <vulnerability>
<ap> ::= <ap_ID>
<ap_ID> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 ...
<vulnerability> ::= <V_ID>
<V_ID> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6| 7| 8| 9 ...

# DEFENSE GRAMMAR
<defense> ::= <mitigation>,<mitigation>,<mitigation>,<mitigation>
<mitigation>::= <update> | <monitor>
<monitor>::= <node>,<ap_id>
<update> ::= 'os',<node> | 'app',<app_id>
<ap_id> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6| 7| 8| 9 ...
<node> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6| 7| 8| 9 ...

significantly from other forms of genetic programming. A gram-

mar allows the representation of candidate solution behavior to

be easily customized and expressed in direct domain vocabulary.

Grammars also offer design flexibility: changing out a grammar

and the environment of behavioral execution does not require any

changes to the rest of the algorithm.

We describe the search space of attacks with a BNF grammar, see

Figure 2. An individual encodes 3 attack patterns and one software

vulnerability. Entries in the CAPEC catalog (we used 579 values

retrieved from [6] are selected by an individual using a numerical

identifier lookup. The attack grammar allows these identifiers to be

evolved. The attack includes a CVE entry (i.e. software vulnerability)

that does not have to be associated with an attack pattern. This

allows a known vulnerability to be targeted without being targeted

using any attack patterns from CAPEC.

The defense grammar, see Figure 2, describes a list of network

mitigations. EvoAPT integrates a budget constraint into defend-

ing. Conceptually, it assigns a cost to both kinds of mitigations –

software updates and software monitoring. It limits the maximum

number of monitoring mitigations to model their frequently high

cost and allows updates that don’t exceed the budget limit. At

an implementation level of cost and budgeting, our limit allows a

defense only 4 mitigations and at most 3 of them being monitoring.

When a mitigation is beyond its budget, the mitigation is ignored.

4.2 Network

We experiment with 2 enterprise class C like networks, provided

by domain experts. They are large and small in size. The large net-

work has 787 nodes and 789 edges while the small network has

147 nodes and 147 edges. For each network, EvoAPT stores an

adjacency graph. Nodes have a type property: e.g. server, client.

Each node also contains a list of the applications that execute on it,

specified in Common Platform Enumeration (CPE) format. We cal-

culate centrality of a node, (recall, to assign a cost to a monitoring

mitigation), using a function called degree_centrality1.

4.3 Adversarial Objective

The defense-attack coupled objective is “minimax”, i.e. the defense

seeks to minimize the maximum fitness of the attack. Practically,

in EvoAPT’s implementation level, attacks maximize fitness, i.e.

1https://networkx.github.io/documentation/networkx-2.2/reference/algorithms/
centrality.html

https://networkx.github.io/documentation/networkx-2.2/reference/algorithms/centrality.html
https://networkx.github.io/documentation/networkx-2.2/reference/algorithms/centrality.html
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Table 1: Coevolution in cyber security applications. A name to simplify identification, the coevolutionary algorithm variant,

cyber security environment, competition, attack and defense behaviors, model of environment and objective are shown in

the columns.

Name Alg. Variant Topic Competition Attack behavior Defense behavior Env Model Objective

CANDLES [22] Alternating Network exploit and

propagation

Prevention vs Con-

tagion

Exploit & Reconnais-

sance

Detection & Mitiga-

tion

Simplified Network

Simulator

Adversary profit

RIVALS-

Enclave [20]

Alternating Network Enclave

Partition

Isolation vs Conta-

gion

Malware Contagion

“strength”

Tap and device

placement

Graph Mission Delay

RIVALS-

DDOS [20]

Alternating,

Archives,

Compendium

Peer-2-peer net-

work

Robustness vs De-

nial

Graph impairment Network settings Simplified network

simulation

Mission Disruption

RIVALS-

Deception [20]

Lockstep SDN network Deception vs Recon-

naissance

NMAP scan Deceptive SDN con-

figuration

Mininet Detection Speed

RIVALS-

SDP[25]

Alternating Software Defined

Perimeter

Security vs Useabil-

ity

Effort Compliance and

Tap

Graph Risk and Useability

AIS-TCP[19] Alternating Network traffic Detection vs Eva-

sion

Self Non-self TCP dump Detection accuracy

Coev-

Malware[24]

Alternating Android Malware

and detection

Detection vs Eva-

sion

Malware variant Code features Code and virus de-

tectors

Detection accuracy

ArmsRace-

1[1]

Parallel with

Archive

Android Malware

and detection

Detection vs Eva-

sion

Malware variant Code features Code and virus de-

tectors

Detection accuracy

ArmsRace-

2[28]

Alternating Android Malware

and detection

Detection vs Eva-

sion

Malware variant Code features Code and virus de-

tectors

Detection accuracy

Table 2: Experiment parameter names and values

Parameter name Value

Population size 20

Generations 10

Lock Step Population size 10

Lock Step Generations 2

Crossover Probability 0.9

Mutation Probability 0.1

Max Length 100

Tournament Size 2

Elite size 1

Number of runs 30

the harm they inflict, and defenses maximize the negated fitness

of the attack, minimizing harm inflicted.

4.4 Experimental Parameters

Experimental parameters are in Table 2 and our algorithm variants

are named in Table 3. To identify the best attack and defense from

a run, for the large network, we run an “out of sample evaluation”.

We start with a pool of the fittest members of the run’s two popula-

tions at the last generation. We compete this pool against a small

set of new adversaries that we manually select from other runs exe-

cuted independently from these experiments. The fittest attack and

defense of this exercise are designated best-of-run. This evaluation

creates an even playing field for comparing the best-of-run’s. It is

necessary because fitness in a coevolutionary algorithm is relative

to a population of competitors and each run’s final population is

assumed to be different.

The experiments are summarized in Table 3. Each experiment is

run with competitions on the large and small networks. The next

section describes the results from the experiments.

5 SIMULATIONS

We present the averaged results of 30 runs for each of the 5 algo-

rithm variants, with both networks (large and small) in Table 4.

The out-of-sample performance can be examined in Table 5. First,

Table 3: EvoAPT Algorithm Variants and names

Variant Name

Evolve attacks vs a non-evolving defense. Attack

Evolve defenses vs a non-evolving attack Defense

Coevolve both populations, alternating Coev

Coevolve with Lock-step LS_Coev

Coevolve with Recency prioritization Recent_Coev

Coevolve both populations, alternating clipped search space CLIPPED

Table 4: Average Best Fitness for the 5 algorithm variants

and two network sizes. The theoretically highest possible at-

tack fitness for the small network is 109, 411 and for the large

network is 426, 814. The theoretically best defense fitness for

the small network is −108, 224 and for the large network is

−427, 690

Small Network Large Network

Variant Attack Fitness Defense Fitness Attack Fitness Defense Fitness

Attack 109, 393 ± 0.0 NA 426, 659 ± 0.0 NA

Defense NA −90, 566 ± 2, 260 NA −416, 691 ± 3, 302
Recent_Coev 108, 367 ± 0.0 −107, 835 ± 55 426, 813 ± 3 −419, 668 ± 50
Coev 105, 386 ± 1, 505 −104, 520 ± 1, 530 426, 648 ± 1, 564 −421, 485 ± 2, 445
LS_Coev 105, 782 ± 1, 313 −105, 031 ± 1, 450 426, 652 ± 1, 160 −423, 619 ± 1, 785

Table 5: Out of Sample (OoS) Fitness

Variant OoS Attacker OoS Defender

Attack NA Mean:426, 620, Min: 426, 526
Defense Mean:−408, 782, Min: −426, 750 NA

Recent_Coev Mean:−408, 746, Min:−426, 714 Mean:426, 626, Min: 426, 526
Coev Mean:−408, 623, Min:−426, 596 Mean:426, 617, Min: 426, 517
LS_Coev Mean:−408, 591, Min:−426, 536 Mean:426, 620, Min: 426, 522

we will compare the overall results of the 5 algorithm variants and

then we will look at each variant individually.

5.1 Algorithm Variant Comparison

Table 4 provides performance measurements of the 5 algorithm

variants with both large and small networks. In general, we would

expect that a population that is evolving against a static adversary
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would have a higher fitness value compared to two populations

coevolving in response to each other. Our experiments validate this

assumptions, per Table 4 where both Attack and Defense outscore

coevolutionary variants. The theoretically highest possible attack

fitness for the small network is 109, 411 and for the large network

is 426, 814. The theoretically highest lowest defense fitness for the

small network is −108, 224 and for the large network is −427, 690.
We see that an adaptive defense (attack), assuming a static attack

(defense), can reliably approach these theoretical limits. We expect

that additional fitness evaluations would allow them to reach them.

Table 5, column 2, provides the performance of the best defenses

selected from a run when they are pitted against a small set of out

of sample attacks (lower fitness indicates a better performance).

The Defense defenses do not perform as well as the coevolved ones

because they have been evolved narrowly, ie. against a static attack.

Out of sample fitness performance differs among the variants of

coevolution. The defenses found by LS_Coev are the fittest relative

to the other approaches, Coev is in the middle and Recent_Coev is

the least fit (though fitter than Defense). This reflects the different

modeling purposes of the algorithms. The Coev variant simulates

an interaction dynamic that is more concurrent, where defenses re-

act much quicker than in LS_Coev. During evolution, Recent_Coev

redefines its focus each new generation to the strongest attack or

defense in the previous generation, so it is exposed to fewer attack

variations, making it more brittle to previously-unseen attacks.

Table 5, column 3, provides the performance of the best attacks

selected from a run when they are competed against a small set of

out of sample defenses (higher fitness is better). The relative results

are less definitive so we examined the defenses manually. The

examination uncovered the existence of a small number of attack

patterns that link to a large number of vulnerabilities, implying

that a large group of the vulnerabilities have similar CVSSs. These
“powerful’ attack patterns are very influential, i.e. are found in all

of the strongest attacks from each of the evolution and coevolution

simulations.

We count the number of unique attack patterns found in the

final populations of the 30 runs for each variant. The large and

small networks are exposed, respectively, to the threats of 196 and
186 attack patterns. This is a only fraction of the total number of

attack patterns in the CAPEC catalog.

5.2 Evolving Attacks, Static Defense

The goal of the Attack simulations was to examine the performance

of an attack that is adapting versus a non-evolving defense that we

manually designed. We examine the evolved individuals’ attack pat-

terns. Almost all (≈ 98%) of the attack patterns that posed a threat

to the networks were found at least once in the best performing

individual in both small and large networks runs. There were many

more unique attack patterns that appeared in the best performing

individual: we found a total of 517 and 515 unique attack pattern

variants across all the individuals for the large and small networks.

Some attack patterns occurred quite frequently compared to others,

as can be seen Table 6. Many of the attack patterns that frequently

occurred are related to buffer overflow. We also note that some

attack patterns were more likely to occur with certain other attack

patterns. This is likely explained by the fact that attack patterns

Table 6: Most frequent attack patterns that occurred in the

best performing individual in the large networkAttack sim-

ulation across the 30 runs.

Single attack patterns

Overflow Buffers (61)

XML Oversized Payloads (42)

Leverage Executable Code in Non-Executable Files (39)

Manipulating Web Input to File System Calls (37)

Using Malicious Files (32)

Pairs of correlated attack patterns

Manipulating Web Input to File System Calls, Overflow Buffers (33)

Leverage Executable Code in Non-Exec. Files, XML Oversized Payloads (25)

Restful Privilege Elevation, XML Oversized Payloads (21)

AJAX Fingerprinting, Overflow Buffers (20)

Using Malicious Files, XML Oversized Payloads (18)

Table 7: Software selected formitigation in theDefense sim-

ulations. The frequency indicates howmany times the high-

est performing individual (in a trial) referenced this node.

There were 120 total nodes referenced.

Network Node ID Frequency Centrality

Small Network

windows_10-ABUsr11 7 0.007

windows_10-ABUsr2 9 0.007

windows_server_2008-AHProxy 13 0.007

windows_server_2008-AHDNS 15 0.007

windows_server_2008-JF 26 0.007

Large Network

windows_server_2008-Dfile4 7 0.0012

windows_server_2008-AHProxy 9 0.0012

windows_server_2008-Q 13 0

windows_10-MCN 22 0.0025

windows_10-CEF 26 0.012

overlap with the vulnerabilities they have been observed to attack

because of linkage through common CWE weakness entries.

5.3 Static Attack, Evolving Defenses

The goal of the Defense simulations was to examine the perfor-

mance of defenses against a non-evolved (static) attack that we

manually selected as effective when examining the final popula-

tion of a run. An overview of the different evolved mitigations is

presented in Table 8. Generally, we see that the defense chose to

mitigate potential attacks on an operating system (OS) most of

the time. The OS most commonly referenced was a Windows 2008

Server. We also see that for applications, monitoring was more fre-

quent than software updating. This makes sense since monitoring

has a higher impact (CVSS is zero’d). The two networks, with differ-

ent sizes and software configurations, differed in the application

that was most mitigated. However, runs on both networks refer-

enced many applications that were mitigated only once during the

run. This is likely an artifact of the simulations’ small population

size and the number of fitness evaluations the runs executed.

We are particularly interested in the most frequently appear-

ing nodes. These are listed in Table 7 along with their centrality.

Theoretically, these would indicate to security personnel which

nodes on the system they should consider most vulnerable, given

the applications (and versions of those applications), they support

and their operating system version.
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Table 8: Details on the different mitigations that occurred in

the best performing individual in the Defense simulations

for the large and small networks

Mitigation/ NodeType/Common Large Network Small Network

Monitor 0.225 0.22

OS update 0.59 0.64

Application update 0.18 0.14

Client 0.43 0.50

Server 0.57 0.50

Most Common OS Windows Server 2008 Windows Server 2008

Most Common Application Google Chrome Adobe Acrobat

Table 9: Details on the different mitigations that were found

in the best performing defense for the large network in the

coevolution simulations. The numerical values indicate the

percentage of the mitigations that contained this value.

Mitigation/NodeType/Common Recent_Coev Coev LS_Coev

Monitor _Add 0.23 0.275 0.25

OS update 0.54 0.53 0.58

Application update 0.23 0.195 0.17

Client 0.33 0.55 0.56

Server 0.667 0.45 0.44

Most Common OS Mitigated Windows 10 Windows 10 Windows 10

Most Common App Mitigated Internet Explorer Adobe Acrobat Adobe Acrobat

Table 10: Coevolved nodes selected for mitigation. The fre-

quency indicates howmany times the highest performingin-

dividual (in a run) referenced this node. Therewere 120 total

nodes referenced. Centrality is shown in column Centr.

Large Network Small Network

Variant Node ID Freq. Centr. Node ID Freq. Centr.

Recent_Coev

ABFile 8 0.0012 AGF 9 0.007

CFTP 9 0.0012 windows_server_2008 AHDNS 12 0.007

DFile 3 12 0.0012 windows_server_2008 AIDNS 21 0.007

DFile 4 16 0.0012 JF 21 0.007

windows _10 CEF 35 0.0012 AIF 25 0.007

Coev

CK 3 0.0012 windows_10-ABUsr15 3 0.007

windows_10 CL 3 0.0012 windows_server_2008 -OFDNS 3 0.007

windows_10 CK 4 0.0012 windows_server_2008- AIDNS 4 0.007

windows_10 MCN 7 0.0025 windows_server_ 2008 0OWeb 4 0.007

windows_10 CEE 7 0.0012 windows_server_ 2008 A 5 0.007

LS_Coev

windows_10 FileCont 3 0.0012 windows_server_2008 AGF 2 0.007

windows_server_2008 DFile4 3 0.0012 windows_server_2008 AINC File 2 0.007

windows_10 CK 4 0.0012 windows_10 ARUser14 3 0.007

windows_10 MCN 6 0.0025 windows_server_2008 AHproxy 4 0.007

windows_10 CEF 8 0.0012 windows_server_2008 JF 10 0.007

5.4 Coevolving Defenses and Attacks

A summary of the algorithm variants’ evolved fitness is presented

in Table 4. Summaries of the different mitigations found by coevo-

lution defenses can be found in Tables 9 and Table 10. We discuss

each variant one at a time, comparing each to the others.

Recent_Coev. From the out-of-sample performance, we see

that in the defense case Recent_Coev coevolution, has better per-

formance than the static cases but worse performance compared

to Coev and LS_Coev. The algorithm was able to find 468 unique

attack patterns across the 30 runs in both the large network and

small network. However, the attack only found 91% of the possible

attack patterns for both networks which is smaller compared to the

percentage found by the attack evolving against a fixed defense.

This is expected because adapting to an adapting adversary is more

challenging for evolutionary search.

The defense mitigations used by Recent_Coev were a bit dif-

ferent than the ones chosen in the Defense simulations but were

Table 11: Attack patterns that occurred in the best perform-

ing individual in the small and large network coevolution

simulation across the 30 runs

Coevolution Large Network Small Network

Recent_Coev

Overflow Buffers (20) Overflow Buffers (19)

Dom-Based XSS (14) Leverage Executable Code in

Non-Executable Files (13)

XML Oversized Payloads (12) Manipulating Web Input to

File System Calls (13)

XSS Using MIME Type Mis-

match (12)

Target Programs with Ele-

vated Privileges (12)

Buffer Overflow in an API

Call (11)

XML Oversized Payloads (12)

Coev

Using Malicious Files (11) Target Programs with Ele-

vated Privileges (9)

Filter Failure through buffer

overflow (11)

Restful Privilege Escalation

(11)

Restful Privilege Escalation

(12)

Buffer Overflow (12)

Overflow Buffers (12) Using Malicious Files (12)

XML Oversized Payloads (15) XML Oversized Payloads (16)

LS_Coev

XML Oversized Payloads (11) Leverage Executable Code in

Non-Executable Files (10)

Manipulating Web Input to

File System Calls (12)

AJAX Fingerprinting (10)

XML Nested Payloads (14) XML Oversized Payloads (11)

Overflow Buffers (15) XML Nested Payloads (15)

Dom-Based XSS (17) Overflow Buffers (16)

fairly consistent with the mitigations found by Coev and LS_Coev.

Recent_Coev preferred servers to clients which was different than

Coev and LS_Coev. Further analysis is required to figure out why.

Coev. Coev had the second best performance out the algorithm

variants in the out-of-sample test. We see similar attack patterns

among highly fit attacks. There were 475 and 482 unique attack

patterns for the large and small networks, which accounted for

about 93% of the possible attack patterns from both networks. One

of the main benefits of coevolution is the ability to explore a more

diverse group of both defenses and attacks which ultimately leads

to being more ‘prepared’ for an unknown attack. Finding 93% of

the possible attacks combined with the varied defenses led to the

increased performance over the Recent_Coev.

LS_Coev. LS_Coev had the highest fitness in the out-of-sample

defense test. While the most frequently used attack patterns were

similar, the number of unique attack patterns found and the per-

centage of possible attack patterns was higher for LS_Coev: 482

unique attack patterns for the large network, which account for

94% of the possible attack patterns of the large network. While the

increase is not large, there are some individual attack patterns that

can be quite damaging and can lead to a large increase or decrease

in fitness. If we increased the number of lock step generations, we

likely would get close to having at least one of each possible attack

pattern in an attack solution. LS_Coev and Coev used mitigations

similarly.

5.5 Search Space Clipping

To consider how the simulations may apply more directly to exist-

ing systems, we narrowed the search space for both attacks and

defenses by examining the experimental runs and extracting the

set of high-performing attack patterns and vulnerabilities listed

in Tables 10 and 11. We then examined the generation time series
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Figure 3: Fitness values over time during the coevolutionary

searches.

for 100 runs with these clipped search spaces using Coev as our

algorithm variant. The results, with the name CLIPPED in Figure 3,

are shown alongside runs of LS_Coev and Coev with the larger

search spaces. The clipped runs lie within a much narrower fitness

band than the others’. Narrowing of the search space reduced the

number of poorly matched attack and defense competitions. What

likely led to a larger variance in fitness scores in the larger search

spaces was removed by clipping the spaces and hence the flatter

line.

We also examined the details of the mitigations and discovered

that both LS_Coev and Coev mitigated a set of common operating

systems and applications. Note that this could not be discerned

from the node identifiers in the individuals because software is

very commonly similar among nodes in our networks.

5.6 Discussion

To summarize at a higher level, comparisons between LS_Coev

and Coev reveal differences that imply each adversarial population

is sensitive to the timing between when its starts to react to its

adversary and for how long this adaptation occurs. All comparisons

show that the attack patterns that evolve i.e. which dominate, see

Table 11, and the effectiveness of the mitigations that evolve, see

Table 5, on population bases, change in distinctive ways. When

the competition within the objective shifts, as with Recent_Coev,

we see the outcome of a simplified experiment around attention

and the consequences of where it focuses mitigation and attack:

if the entire population shifts its collective “attention” to a single

adversary, the cost in terms of lost out-of-sample robustness is high.

This points the way forward to developing simulations with more

population variance, perhaps expressed by different networks for

each defense or by simulating some cooperation among defenses.

5.6.1 Limitations. We should state limitations of different facets

of EvoAPT:

• Competition-wise, EvoAPT investigates only two networks

that a) were acquired in an ad-hoc way and b) are the same for all

defenses. This limits fidelity around mitigation and attack pattern

distributions across evolved populations.

• Using the CVSS for attacks provides a limited model of what

benefit attacks gain when they succeed. EvoAPT does not model

the value of exfiltrating or enabling a future AP critical to a APT

goal. In addition, a general critique of CVSS is that the actual risk
to an organization might not be accurately reflected by this value.

• Algorithmically: True to evolutionary algorithm design princi-

ples, the variants use blindmutation. However this impliesEvoAPT

is not informed by the information structure of attack patterns.

• APT steps were modeled as an attack pattern list and one

vulnerability in lieu of different steps actual APTs may use.

6 CONCLUSIONS & FUTUREWORK

Because APTs evolve with the security community’s defenses, our

goal has been to model this phenomena with coevolutionary algo-

rithms. One challenge was to develop a competition space that ab-

stractly, yet accurately, expresses the actions of the two adversaries:

APTs and the security community. We addressed it by drawing

upon public, descriptions of attack patterns and software that has

needed mitigations. Another challenge was to align variants of

coevolutionary algorithms with evolutionary dynamics observable

in the wild. We addressed it with conventionally alternating, lock-

step, and recency-driven, competitive coevolutionary algorithms.

Our comparative study shows that the way a defensive population

preferentially acts, e.g. with a shifting set of recent attack patterns

as an objective, or reacting to all attack patterns more slowly than

an attack population, results in different evolutionary outcomes,

expressed as different dominant attack patterns.

There are more coevolutionary algorithm variants that we would

like to explore, e.g. those using archives. We also plan future work

that will use data science techniques to more explicitly and quanti-

tatively document APT evolution. We also will consider how our

findings can more directly extend the current use cases of attack

patterns, see [15].
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