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Abstract—To gain strategic insight into defending against the
network reconnaissance stage of advanced persistent threats, we
recreate the escalating competition between scans and deceptive
views on a Software Defined Network (SDN). Our threat model
presumes the defense is a deceptive network view unique for
each node on the network. It can be configured in terms of
the number of honeypots and subnets, as well as how real
nodes are distributed across the subnets. It assumes attacks
are NMAP ping scans that can be configured in terms of how
many IP addresses are scanned and how they are visited. Higher
performing defenses detect the scanner quicker while leaking as
little information as possible while higher performing attacks are
better at evading detection and discovering real nodes. By using
Artificial Intelligence in the form of a competitive coevolutionary
genetic algorithm, we can analyze the configurations of high
performing static defenses and attacks versus their evolving
adversary as well as the optimized configuration of the adversary
itself. When attacks and defenses both evolve, we can observe that
the extent of evolution influences the best configurations.

Index Terms—Coevolution, Software Defined Networks, Net-
work Deception, Genetic Algorithms

I. INTRODUCTION

Cyber attacks targeting networks can be responsible for
significant data breaches [15]. Attackers surreptitiously gain
access to a network using phishing, social engineering or
some such malicious means [6]. Once they have penetrated
the network by compromising a device or endpoint, hence
forward called a node, they conduct scanning to check out
other nodes [13]. This reconnaissance allows them to learn
the topology of the network, the configurations of nodes
(that may be vulnerable to penetration), or the location of
targeted data [14]. With this information they are able to
exfiltrate sensitive information or further their goals, while
remaining undetected. Such multi-stage threats are usually
called advanced persistent threats – APTs. In this paper we
focus on the scanning stage of APTs, motivated by the report
that roughly 70% of cyber attacks are preceded by some sort
of network scan [2].

Many cyber defense strategies aim to prevent adversaries
from gaining access to the network. Still others focus upon
what to do when a network has been compromised [1].

Herein we adopt the latter strategy by investigating deceptive
network defenses to counter APT scanning. The idea of a
deceptive defense is to represent fake, but operational, views
of the network at different nodes so that a scanner will be
detected before it is successful. The deceptive network routing
information entraps the scan at a decoy node, “honeypot”,
slows it down to make it useless, or cause it to reveal itself
through its (delusional) assumptions about the network.

Implementing deception is challenging on a conventional
network, however it is easier on a programmable software
defined network (SDN) [7]. The flexibility that SDNs provide
can be used to administer a deceptive network view and
dispatch it to nodes. A SDN can distort the view of the network
for any node and designate decoy nodes on the network.

One existing SDN multi-component deceptive defense sys-
tem, by Achleitner et al, [1], foils scanning by generating
camouflaged versions of the actual network and providing
them to nodes when they renew their DHCP leases. We use
this system in an emulation capacity. It allows us to explicitly
execute and evaluate competing adversarial strategies in the
form of attacker scanning and defender configurations. We
layer Artificial Intelligence (AI) in the form of a genetic
algorithm (GA) on top of the system. With the GA, we
are modeling the intelligence of adaptive adversaries. The
GA optimizes the configurations of attacks and defense. The
specific competitive, coevolutionary nature of the GA supports
a continuously adapting population of attackers that each try
to defeat a continuously adapting member of a population of
defenses [4], see Figure 1. Specifically, our interests are in:
i) assuming effective attacks or defenses will be intelligently
optimized, ii) identifying and explaining effective network
configurations for deception (defense) and scanning (attack),
given this assumption iii) confirming whether adversarial Arti-
ficial Intelligence of this nature can help to anticipate strategies
for defense configurations to better protect against APTs.

Our contributions can be summarized as:

1) We show how AI, here a genetic algorithm with co-
evolution, can optimize both scan attacks and deceptive
defenses in a network with a SDN network emulator.978-3-903176-15-7 © 2019 IFIP
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Fig. 1: Overview of SDN system with deception, named DeceptiveSDN, and DarkHorse. The two systems recreate the
evolving competition between scans and deceptive views.

2) We analyze the optimized configurations for both defend-
ers and attackers in a deceptive network subject to static
adversaries or when coevolving.

3) Our experiments show that depending on whether the
defender or the attacker is adapting, but the adversary
is static, crowding real nodes onto one subnet will either
be the optimized configuration, or the worst configuration
respectively.

4) Our experiments with coevolving adversaries indicate
sensitivity to the rates of evolution. When the attacker
evolves more (i.e. defender is static temporarily), the
attacker’s optimized scanning batch sizes are small while
the defender’s best response is to distribute real nodes
randomly. Conversely, when the defender evolves more
(i.e. attacker is static temporarily), the attacker’s opti-
mized scanning batch size is 20 times larger while the
defender’s best response is to distribute real nodes evenly,
rather than randomly.

Achleitner’s deception system [1], called by us
DeceptiveSDN, is described in Section II. Our threat
model and AI system, named DarkHorse, are described in
Section III. We analyze the experimental results in Section IV.
Finally, Section V summarizes the results and future work.

II. BACKGROUND

Two examples of research on deception are [5] and [1].
Passive deception works by deploying static decoy systems
such as honeypots [8], [16], [12]. On a network, honeypots
appear real to other nodes on the network, but do not exist in
the underlying network. They do not contain any live data or
information, but they can contain false information that makes
them appear to be high value targets. They can be configured
to prevent the intruder from accessing network enclaves and to
gather information and signal unauthorized use, see Figure 2.
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Fig. 2: Example of a virtual network view showing the place-
ment of nodes and honeypots in order to delay adversaries
from identifying real nodes

Achleitner’s deception system [1], which we call
DeceptiveSDN, defends against network reconnaissance
by simulating virtual network topologies and using passive
deception. It relies upon SDN flow tables and the SDN
separation of controller and switch. These support agile
distribution of virtual, imposter networks that overlay the true
one. Each time any node on the network requests a DHCP
lease, it internally is assigned a unique deceptive network
view. A network view generator sets up these deceptive views
so that the overall address space appears falsely large. It
places real nodes on virtual subnets to increase the time it
takes a scanner to find them and inserts honeypots which it
can monitor for illicit activity. Using the dynamic address
translation provided by the deception server, only one real
node is used, but is simulated to appear as many nodes
dispersed throughout the network. To ensure accurate routing,
a server handles dynamic address translation between the
overlay network, and true network addresses by rewriting the
headers in “real time”. Packets are transferred to it through
flow table logic. Virtual routers simulate virtual paths so
that the scan attack cannot infer the actual topology. [1]
demonstrates the system against a variety of scan attacks.

As we will detail in the next section, the defensive net-
work views and scanning attacks of DeceptiveSDN com-
prise strategic, parametrically configurable, multi-dimensional
spaces. DeceptiveSDN serves as an example of a sys-
tem where it is unknown how to optimally set up an at-
tack or defense configuration – a situation that depends
on the adversary. (Note that from now on we refer to
the virtual network unless explicitly stated). DarkHorse

utilizes DeceptiveSDN as an experimental platform.
DeceptiveSDN allows DarkHorse to measure the out-
come of an “adversarial engagement” between an attack and
a defense, each specified by some set of configuration values.
Outcome informs the GA about relatively better configura-
tions, given the adversaries’ conflicting objectives. We next
succinctly describe our threat model and DarkHorse.

III. METHOD

Threat Model: DarkHorse assumes that a node on a network
has been compromised, and from it there is an attacker
scanning the SDN in an attempt to identify vulnerable nodes.
The attacker’s goals are to evade detection while scanning over
as much of the network as possible and discovering the real



nodes. The defender’s goals are to delay the attacker, waste
their resources, and detect a scan as quickly as possible. Both
the attacker and defender have strategy parameters through
which they can control their respective configurations (details
provided ahead). The defender is assumed to generate a
deceptive view of the network with fake nodes.
DarkHorse: To generate adaptive dynamics, DarkHorse
runs a two population, competitive coevolutionary GA [10],
[11]. One population is attacker scan configurations and the
other is defensive DeceptiveSDN configurations.

The GA adaptively searches through the parameterized con-
figuration spaces, see Table I. Note that we start with a small
search space to validate the method. In addition, the minmax
formulation during the coevolutionary search increases the
problem complexity.

TABLE I: The actor, attacker (red) and defender (blue),
configurations and ranges for values.

Actor Configuration Range
NMAP IP scan batch size [10, 50, 100, 200]

Attacker Total number of IPs to scan [200, 300, 400]
IP address visit order random, local, seqential, local-seq.
Number of real nodes (H) [20, . . . , 40]

Defender Min honeypots per subnet [1, . . . , 10]
Max honeypots per subnet [11, . . . , 20]
Number of subnets [3, . . . , 6]
Real node distribution in subnets random, even, crowding

Attackers use one of four IP visit order heuristics. They:
1) random: uniformly visit at random from all subnets, or
2) local: randomly visit IP addresses closer to scan with higher
likelihood, or 3) seqential: sequentially visit , starting from a
random IP address, or, 4) local-seq.: sequentially visit, starting
at a random nearby IP address. We used the most efficient and
the least invasive scan type, a ping scan. This is challenging
for a defender to detect so it served our purposes. A defender
can configure a different network view for every node. It can
distribute real nodes throughout the network 1) even, evenly,
2) random, randomly, or 3) crowding, by crowding them
all in one random subnet. Honeypots are evenly distributed
throughout subnets.

The GA passes pairs of an attack scan and defense configu-
ration to the DeceptiveSDN. On the DeceptiveSDN, the
scan is run from a randomly picked node after the defense is
passed as configuration information to the deception network
view generator. The DeceptiveSDN passes back scan per-
formance information that the GA uses in its fitness function
to calculate a performance score. This score is used by the GA
to select better attacker and defender configurations to undergo
evolutionary adaptation. Reflecting the objectives of the scans
and defenses, the fitness scores have four components: A) time
for defense to detect a scan (sec.), d, B) time to run the scan
(sec.), t, C) number of scan detections by defender, n, D) and
the fraction h/H which is the ratio of real nodes that were
discovered to total real nodes. The defender fitness function,
where ↵, �, and � are weight constants for different aspects
of the fitness value, is:

f = ↵(1� d

t
) + min(�, n) + max(0, 50� �h/H) (1)

We use ↵ = 25,� = 25, � = 25. The attacker and
defender fitness scores are inverses. The intuition behind this
is that for an attacker the most important thing is to discover
vulnerable nodes without being detected, and conversely the
most important thing for a defender is to detect the scanner
quickly while leaking as little information as possible.
Experimental Setup: Software for Achleitner’s
DeceptiveSDN [1] is available from https:
//github.com/deceptionsystem/master. We provide a
competitive coevolutionary algorithm at https://github.
com/flexgp/donkey\ ge and the specific configurations
at https://github.com/ALFA-group/darkhorseSDN. All
experiments are run twice and we present the best.

We use mininet, a SDN network emulator [9]. First
the DeceptiveSDN is started with an IP address space of
255 times the number of subnets. Any other network node
that requests a new DHCP lease gets a uniquely generated
deceptive network view. A node is chosen at random as the
compromised node and NMAP [3] is used to conduct the
reconnaissance scan on the network. We chose NMAP as our
scanning tool as it is relatively efficient, very versatile, and
would be easy for an adversary to install on a compromised
node. Also it is a widely used scanner and provides a good
approximation of what a malicious scan would look like. In our
setup one simulation of an engagement took around a minute
to evaluate, the configurations of the defender and attacker
NMAP added some variance.

IV. RESULTS AND DISCUSSION

A. Evolving Defenders vs a Static Attacker

Our first set of experiments consider an evolving defender,
i.e. defenses adapted by the GA and a static attacker, i.e. a scan
that does not change. In each of the 20 experiments we aim to
learn an high performing defender configuration for a different
attacker configuration. The attacker configurations are varied
based on IP visit order, batch size and number of IPs to scan.
We believe good defender configurations are those with more
honeypots(HPs), more subnets, and fewer real nodes. They will
also evenly distribute real nodes across subnets. Among the
static attacks, we hypothesize that those with a lower batch size
and a scan that starts locally will pose the greatest challenge
for the evolving defender.

Table II top part (blue/white) presents rows grouped in sets
of four, for visual interpretability. Each group represents an
attacker configuration that is static except for the IP visit order.

1) Static attacker analysis: In considering the relative at-
tack performance among the different static attacks one thing
that stands out is that, on average, an attacker configuration
that scans IPs with local has the measurments that varies
the least against evolved defenders, while an attacker with
local-seq. is the least. This confirms our hypothesis. This is
especially interesting because in the wild, an attacker often



starts by scanning their local subnet. Our results validate the
merit in that approach by finding that it is the most difficult
to evolve a defender against this behavior. Thus they lead to a
recommendation that, anytime a node requests a new DHCP
lease and is assigned a network view, the DeceptiveSDN

should create a deceptive view where all other real nodes are
kept off of the deceptive subnet that the requesting node is
placed on. In this way, the DeceptiveSDN will be able to
limit the impact from a scanner using a scan heuristic that
prefers to scan locally.

Another result is that smaller NMAP batch sizes, on average,
yield an evolved defender that is slightly less successful than
defenders evolved against larger batch sizes. This implies that
it could be more difficult to detect multiple small scans, than
it is to detect long unbroken scans, and is a way in which
malicious nodes can attempt to keep their scans undetected.

A third observation is that, in general, attacks that scan
a smaller number of IPs perform better. While this initially
seems clear, as scanning fewer IPs means less time for the
defender to detect the scanner, the result is actually subtly
complex. One portion of a attacker’s fitness score depends
on whether it evades scan detection, while the rest considers
the number of real nodes discovered. Thus, when an attacker
increases the number of IP addresses it scans and thereby
incurs a greater risk of getting discovered, it also gains greater
potential reward should it discover more real nodes. Therefore,
the result that increasing the number of IP addresses leads to
worse fitness, demonstrates that against an evolved defender,
given this fitness function, the risk of being discovered out-
weighs the reward of discovering more real nodes.

2) Evolved defender analysis: As for the evolved defenders,
see Table III, configurations with more honeypots and more
subnets almost always are the optimized evolved solutions.
This is intuitive, since more honeypots increase the likelihood
that the scanner will be discovered, and more subnets increase
the sparsity of real nodes, making it harder for the scan to
discover them. What is noteworthy is that the average number
of real nodes in the evolved defender configurations is 16.4.
It seems that it would be obviously better for a defender to
have less real nodes in the network, because that means that
there are fewer for the attacker to discover. This is not so
because the fitness function does not depend on the absolute
number of real nodes discovered, but instead depends on
the percentage of real nodes discovered. This design choice
was made for exactly this reason, so that every defender
configuration wouldn’t automatically evolve to having the
minimum number of real nodes. In future experiments, this
is an aspect of the fitness function that could be modified.

TABLE III: Evolved defender configurations. Averaged values
and experimental frequency of real node distribution strategies.

Defender Configurations Avg Evolved Values±Std Range
Number of real nodes 16.4 ± 2.87 10-20

Number of subnets 5.5 ± 0.7 4-6
Min honeypots per subnet 6.6 ± 2.3 1-10
Max honeypots per subnet 17.2 ± 2.6 10-20

Real node distribution strategies even: 4, crowding: 11 random: 5

B. Evolving Attackers vs a Static Defender

Next we aim to learn a high performing attacker configu-
ration against 24 different defender configurations. We make
our predictions with similar rationale to that of our first set
of experiments, hypothesizing that defender configurations
with more honeypots, more subnets, and fewer real nodes
would be more challenging for the attacker to evolve against.
Similar to our first round of experiments, we hypothesize that
smaller NMAP batch sizes will be harder to detect by the
SDN controller and thus yield better fitness scores. Table II
lower half(red/white) lists the results from the static defender
experiments. The rows are grouped in sets of three, each group
representing a defender configuration that is constant except
for variation according to real node distribution heuristic.

1) Static defender analysis: Similar to the evolved de-
fender, static defender configurations with more honeypots and
more subnets are more robust than configurations with fewer
honeypots and subnets. This is intuitive since more honeypots
increase the chance to detect a scan, and the more subnets
spread out the real nodes, they are more difficult to find.

Defender configurations that crowd real nodes into a subnet
are consistently less effective, in terms of fitness score, than
either even or randomly distributed configurations. This result
seems to stand in contrast to the results of the evolved
defender, which most frequently evolved to have a crowded
distribution of real nodes. While these results at first seem
contradictory, after analysis they make sense. For the static
defender, it makes sense that a crowded distribution of real
nodes does poorly, as we are evolving the attacker. Over the
course of the evolution, one of the attacker configurations will
likely evolve to scan the space where the crowded distribution
occurs, thus discovering many real nodes in one scan. The
evolved defender uses the crowded distribution in the precisely
opposite way, since the attacker scan is static, during the
defender evolution it is able to move the crowded distribution
of real nodes to a subnet where the attacker isn’t scanning,
thus significantly decreasing the number of real nodes that the
attacker discovers. In conclusion, depending on whether the
defender or the attacker is evolving, a crowded distribution of
real nodes will either be the optimized configuration, or the
worst configuration.

2) Evolved attacker analysis: Analyzing the evolved at-
tacker configurations corroborates much of the preceding
analysis. As evidenced by Table IV, scans with local are most
often the optimal solutions. Similarly, for the evolved attacker,
smaller NMAP batch sizes and a smaller number of scanned IP
addresses yield better fitness values.

TABLE IV: Frequencies of IP visit order heuristics in the
evolved attacker.

IP Visit Order Frequency of Scan
random 0

local 7
seqential 14

local-seq. 3



C. Coevolution Experiment

Finally, we coevolve attacker and a defender configurations.
We use a lockstep algorithm [10] that locks one population
static for 3 generations while evolving its adversary, and
then releases the locking, allowing the adversary just one
generation to evolve. These asymmetric steps are repeated
three times and simulate different rates of adaption. Note that
these experiments use the percent of the total network space
to scan instead of the number of IP addresses.

TABLE V: Lockstepped attackers and defenders. Configura-
tion of best adversary at last iteration is shown.

Configuration High Rate Attack
Evolution

High Rate De-
fense Evolution

Visit order seqential seqential
Best Attack NMAP batch size 200 10

Ratio of IPs to scan 0.10 0.10
Real nodes 22 24

Best Defense Distribution heuristic even crowding
Virtual subnets 6 4
[min-max] HPs/subnet [8-14] [7-18]

The results for the best attack at the last generation, see
Table V, show that with a faster or slower evolving defender,
an evolvable attacker scan that sequentially visits local IPs
(seqential) and scans a smaller portion of the network, is the
most effective. However, depending on whether the defense
evolves slower or faster than the attack, the optimized attack
uses a NMAP batch size of 200, or 10 – twenty times larger.
Reading across the Best Defense row, one distinction between
fast or slow evolution is how real nodes should be distributed
across subnets. random is never ideal, whereas even is better
when the defense can evolve slower, and crowding when the
defense evolves faster, is better. Another difference is the
number of virtual subnets – 6 and 4 respectively for slower
and faster defense evolution. A final observation, which we
extract from the fitness scores, is that the defender does
significantly worse during coevolution than during the static
evolution scenarios previously investigated. Illuminated by the
average fitness score of the evolving Defender on the static
attacker was 83, whereas on the evolving attacker the fitness
value was barely above 60. This indicates that an adaptive
attacker could pose a threat a DeceptiveSDN with adaptive
defenses.

V. CONCLUSIONS AND FUTURE WORK

Our results from DarkHorse imply that deceptive SDN
networks can make it more challenging for an adversary
to scan the network, especially without being detected. The
different configurations that the defender and the attacker
use have impacts on the number of real nodes detected by
the attacker, as well as the probability that the attacker is
discovered. When setting up the different views to assign to
nodes on the network, our experiments recommend dispersing
real nodes throughout the deceptive subnets. If a specific node
is a target, they indicate to keep other real nodes off of
its subnet. They also indicate that a deceptive network view
can defend well against many attacks, however, even with

a deceptive network view, there exist attack configurations
which are better performing than others. Namely, scans that
use smaller batch sizes, scan with a local preference, and scan
smaller IP ranges are more effective.

While our results indicate that more deceptive subnets and
honeypots are better, we have not added their cost to regular
network traffic. A cost would result in a balance point between
the security of having more virtual subnets, and the increased
delay of sending packets through virtual routers.

For future work, improving upon the sophistication of
the scanning and defending, e.g. adapting how to allocate
honeypots, offers one direction. DarkHorse also allows
scenarios where more than one real node is compromised.
These and different fitness functions scenarios could also be
investigated.
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