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Abstract. Low population diversity is recognized as a factor in pre-
mature convergence of evolutionary algorithms. We investigate program
synthesis performance via grammatical evolution. We focus on novelty
search – substituting the conventional search objective – based on syn-
thesis quality, with a novelty objective. This prompts us to introduce a
new selection method named knobelty. It parametrically balances ex-
ploration and exploitation by creating a mixed population of parents.
One subset is chosen based on performance quality and the other subset
is chosen based on diversity. Three versions of this method, two that
adaptively tune balance during evolution solve program synthesis prob-
lems more accurately, faster and with less duplication than grammatical
evolution with lexicase selection.
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1 Introduction

Program synthesis is an open, relevant and challenging problem domain within
genetic programming, (GP) [1]. Synthesis of introductory programming problems
has been tackled using methods such as PUSHGP [2] and Grammar Guided Ge-
netic Programming (G3P) [3]. These methods have, to date, not been able to
solve the complete suite of program synthesis benchmark problems introduced
in [1]. One possible explanation is convergence to local optima. Premature con-
vergence is often correlated with low solution diversity. The population becomes
concentrated within a small part of the solution space and crossover and mu-
tation operators yield only sub-optimal solutions. In GP, for example, diversity
has been narrowly examined in lexicase selection studies solving program syn-
thesis [4]. In this paper, we present a broader study of diversity in GP with
Grammatical Evolution (GE) and program synthesis. Our central question is:
Can diversity be controlled within GP to improve synthesis perfor-
mance and prevent premature convergence?

An approach called novelty search, introduced in [5] provides us with partial
inspiration. In novelty search, rather counterintuitively, selection is altered so
its objective is not to select a solution of superior “quality”, e.g. performance
on synthesis, but of higher novelty, using a score calculated by measuring how
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different a solution is from others. Over the course of a search completely bi-
ased by novelty, untimely convergence is circumvented and solutions of better
quality can be coincidentally identified as side effects, despite quality being ig-
nored by selection, see [5–7]. Novelty search has a demonstrated track record
in benchmark tunably deceptive problems and academic problems but there are
differences between these domains and program synthesis. In GP, on robot con-
troller, symbolic regression and genetic improvement, novelty search results are
mixed [7, 8, 6].

Our study finds that some distance measures used in “pure” novelty search
can struggle to find solutions that perform synthesis well. But, it reveals an
intuitive similarity between lexicase selection and novelty search that considers
output novelty. Time plots of novelty search point to a new hypothesis stating
that a search relying upon a population which has members that are good at
synthesis and others that are novel, will yield better solutions. Distinctly, this
hypothesis does NOT propose a population composed of members that individ-
ually combine novelty and synthesis performance. Instead, it seeks a population
of mixed composition.

To validate the hypothesis empirically, the study proposes a form of tunable
selection that we call knobelty. The name knobelty, a porte-manteau of nov-
elty and knob, conveys that the selection method has a parameterized threshold
(vis. knob) that controls the likelihood of a novelty selection objective being used
vs a performance-based one. In expectation, knobelty populates a population
of parents, some fraction of which have been selected by a novelty measure,
and the rest by synthesis performance. The study evaluates three versions of
knobelty that differ by how the threshold between novelty and performance is
controlled. The base case splits between novelty and performance selection using
a static threshold, unchanged over a run. Two others vary how much novelty is
selected for during evolution, i.e. dynamically. One decreases the threshold us-
ing a decreasing exponential function sensitive to time. The other is sensitive
to duplication. Every generation, it re-adjusts the threshold according to the
duplication that arises after selection, mutation and crossover. The study pro-
ceeds with a representative subset of program synthesis problems and reports
the accuracy, speed, and efficiency of knobelty, concluding it is successful and
worthy of more study.

The structure of the paper is as follows, Section 2 has background. Our
methods are in Section 3. Experiments, results and discussion are in Section 4.
Finally, Section 5 has conclusions and future work.

2 Background

The foundations of this study are grammar based GP – in the form of Gram-
matical Evolution, program synthesis and search convergence analysis through
the lens of diversity and novelty search. We present background for each topic
in this section.
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2.1 Grammar Based Genetic Programming

Grammatical Evolution (GE) is a genetic programming algorithm, where a BNF-
style, context free grammar is used in the genotype to phenotype mapping
process [9]. A grammar provides flexibility because the solution language can
be changed without changing the rest of the GP system. Different grammars,
for the same language, can also be chosen to guide search bias. The genotype-
phenotype mapping allows variation operators, crossover and mutation, to work
on the genotype (an integer vector), or the derivation tree that is intermediate to
the genotype and phenotype. Following natural evolution, selection is based on
phenotype behavior, i.e. performance of program on required task. A drawback
of GE is lack of locality [10].

A context free grammar (CFG) is a four-tuple G = 〈N,Σ,R, S〉, where: 1) N
is a finite non-empty set of non-terminal symbols. 2) Σ is a finite non-empty set
of terminal symbols and N ∩ Σ = ∅, the empty set. 3) R is a finite set of
production rules of the form R : N 7→ V ∗ : A 7→ α or (A,α) where A ∈ N and
α ∈ V ∗. V ∗ is the set of all strings constructed from N ∪ Σ and R ⊆ N × V ∗,
R 6= ∅. 4) S is the start symbol, S ∈ N [11].

GE uses a sequence of (many-to-one) mappings to transition from a genotype
to its fitness:

1) Genotype: An integer sequence
2) Derivation Tree: Each integer in the genotype controls production rule

selection in the grammar. This generates a rule production sequence which can
be represented as a derivation tree

Program/Phenotype: The leaves (terminals) of the derivation tree,
which together form the sentence. For example, in the program synthesis do-
main this is the generated program.

3) Fitness: For each test case, a value is assigned measuring the distance
between the desired outputs and program outputs when executed with it. For
a solution, fitness summarizes this value for all test cases. It can be a scalar
statistic, e.g. sum, or a bit vector for each test case’s success test.

2.2 Program Synthesis

In GP, program synthesis is formulated as an optimization problem: find a pro-
gram q from a domain Q that minimizes combined error on a set of input-output
cases [X,Y ]N , x ∈ X, y ∈ Y . Typically an indicator function measures error on
a single case: 1: q(x) 6= y.

Initial forays into program synthesis considered specific programming tech-
niques, such as recursion, lambda abstractions and reflection, or languages such
as C or C++, or problems such as caching, exact integer and distributed algo-
rithms, [12–18]. Other approaches consider implicit fitness sharing, co-solvability,
trace convergence analysis, pattern-guided program synthesis, and behavioral
archives of subprograms [19].

Subsequently, a general program synthesis benchmark suite of 29 problems
systematically selected from sources of introductory computer science program-
ming problems became available to the GP community [1]. Multiple studies,
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many with PUSHGP, have drawn on this suite, e.g. a study of different selec-
tion operators, in particular one named lexicase selection [4, 20]. Diversity was
measured in this work as a means of explaining why lexicase selection works.
The goal of lexicase selection can be summarized as promoting into the next
generation, parents that collectively solve different test cases. In this work, our
baseline algorithm, GE Perf and the performance selection modules of knobelty
algorithms use lexicase selection. Referencing the same benchmarks G3P at-
tempts to present a general grammar suitable for arbitrary program synthesis
problems [21]. Another G3P effort analyses test set generalization [3].

2.3 Search Convergence

Solution discovery can be hindered by convergence to local optima. Diversity
and behavioral novelty are two methods to address this.

Diversity Early diversity related work in genetic algorithms includes “crowd-
ing” [22, 23] where a solution is compared bitwise to a randomly drawn subpop-
ulation and replaces the most similar member among the subpopulation. Later
studies enforce some sort of solution niching. Separation of the population by age
is done with ALPS [24]. Spatial separation of solutions is used in coevolutionary
learning [25]. Behavioral information distance sustains diversity on the Tartarus
problem [26]. In GP, diversity measures and diversity’s correlation with fitness
were studied as early as [27], and diversity has continually been demonstrated to
play an important role in premature convergence [28]. Surprisingly, [29] showed
that even variable-length GP trees can still converge genotypically.

Interestingly, bloat confounds tree distance. When trees get bigger, but do
not change behaviorally because of bloat, distance becomes nonsensical, see [30].
This indicates bloat must be under control if we use diversity to guide the search.
Overall, past efforts show that it is rare to use diversity to guide search. In ad-
dition, there is also limited work on diversity and program synthesis.

Novelty Search Novelty search [5] is one approach to overcome convergence and
lack of solution diversity. In pure novelty search, there is absolutely no selection
pressure based on performance. The method uses a distance measure (defined
over 2 solutions), a novelty measure defined for a solution (summarizing many
distance measurements to others), a management policy for the memory holding
solutions that the search has to date generated (from which distance/novelty
will be calculated) and a selection objective maximizing novelty. Novelty search
stresses selecting for novelty in a behavioral domain. The most intuitive represen-
tation of behavior in GP has been explored – program outputs. Since programs
and derivation trees express behavior through statically analyzable semantic
information, alternate representations remain to be explored. This study, for ex-
ample, uses distance measures over GE programs and derivation trees. It also
implements an updated memory management policy that uses an unbounded
cache and sampling for novelty approximation.
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GP explorations with novelty search [8] are comparable on different axes:
problem domains and new methods. Problem domains include robot controller
navigation, symbolic regression, classification among others [7, 8, 6, 31, 32]. New
methods include crowding selection methods and a weighted combined fitness
and novelty score [33]. Similarly, [7] combine diversity and performance into one
objective convergence in a robot controller problem.

The background implies that there are research opportunities at the inter-
section of GP using grammars, program synthesis and novelty search. The next
section introduces the methods we develop for this investigation.

3 Method

We proceed in three phases. In the first phase we evaluate novelty during GE
program synthesis evolution. Methodologically this requires a distance measure
(see 3.1), a novelty measure and a statistical summarization of novelty for a
population (see 3.2).

3.1 Our Distance Measures

A distance measure is defined between two solutions i, j, d(i, j) ∈ R. It describes
how far apart solutions are, in some basis. We measure distance using each of
the representations in GE that map from genotype to phenotype, plus outputs:

1) Genotype: We measure with Hamming distance.
2) Derivation Tree (DT): Distance is a common and different nodes count.

Ignoring structure, we collapse the tree structure into node counts. We measure
distance as the Euclidean norm of the nodes common to both trees plus how
many nodes are different.

3) Phenotype: We measure with (Levenshtein1) string edit distance and di-
vide all measurements by the size of the largest phenotype.

4) Output distance: We record the success of each test case in a binary vector
cell. Output distance is the Hamming distance between the two vectors.

3.2 How We Measure Novelty

A novelty measure of a GE solution j is based on its pairwise distances to a set
of programs C. We average these pairwise distances to obtain a scalar novelty
value.

Conceptually C must function as a memory structure. One option is to make
it an archive that is finite and selectively updated depending on some entry and
retirement policy. A policy typically has multiple threshold parameters which
makes it complex to manage. Alternatively, C can be an “infinite” cache but the
cost of computing distance from j to every solution in a cache is computationally
expensive.

1 https://en.wikipedia.org/wiki/String_metric
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Algorithm 1 A(i, d, C,N) Novelty approximation
Parameters: I Individual, d distance measure, C cache, N sample size

1: n← 0 . Initial novelty
2: for i ∈ [1, . . . , N ] do . Draw individuals to compare against
3: O ←∼ U(C) . Uniform sampling with replacement
4: n← n+ d(I,O) . Get distance

5: return n/N . Return average distance

We propose to simplify C and streamline its computation. We record every
unique encountered individual in C. To approximate the novelty of j, we draw
N samples (with replacement) from C and average d(k, j) over them. To choose
N , we scan a range of sample sizes and choose a value that is stable under many
draws. Whereas the extreme case of a bottomless cache scales O(P 2T 2), (T is
the number of generations and P is the population size), sampling reduces the
complexity to O(NPT ). Algorithm 1 shows our approximate novelty calculation.

3.3 Knobelty Selection

We observe that convergence must be influenced by dual forces: the diversity
of solutions in the population and the performance or quality of solutions in
the population. The former fosters explorative search and the latter exploitive
search; at issue is how to juggle these. They are not always conflicting so a
multi-objective framing is inappropriate. A weighted score balancing each of
them could be used as fitness but this would not explicitly yield either good
performers or highly diverse solutions but solutions in between. We propose,
therefore, to control this balance between exploration and exploration by creat-
ing a mixed parent pool. One subset will be selected based on novelty and the
other based on performance. A parameterized threshold (knob) κ ∈ [0, 1] choos-
ing between novelty and performance selection will determine the subsets’ sizes
in expectation. We call this Knobelty Selection. Our hypothesis is that the de-
crease in fitness selection pressure and increase in novelty selection pressure will
prevent convergence to local optima without severely degrading the efficiency
for finding a global optima. Algorithm 4 supports three control methods for κ:

Static Keep κ constant. (line 3)
Gen Adapt Change κ every generation, κ(t) = 2−λt, t =generation, using

an exponential schedule to initially boost novelty and then afterwards allow the
population to slowly converge.

Dup Adapt Change κ according to duplication in the population. We ini-
tialize κ and, realizing crossover and mutation can disrupt the balance between
novelty and performance selection, we check the duplication ratio of the popu-
lation and adjust κ to κ(t) = 1− |{x|x, y ∈ P, x 6= y}|/|P |.

See Algorithms 2, 3, and 4 for more details. With these distance measures,
novelty definitions and knobelty selection we proceed to experimental evalua-
tion.
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Algorithm 2 Sν(P,C) Novelty Based Selection
Parameters: P Population, C cache
Local: ω tournament size, d distance measure

1: τ ← St(ω, P ) . Randomly choose competitors for a tournament
2: for i ∈ τ do . Calculate novelty of each competitor
3: iν ← A(i, d, C,N) . Approximate novelty, see Alg. 1

4: return max(τν) . Pick most novel competitor

Algorithm 3 S(P,C, κ) Knobelty Selection
Parameters: P population, C cache, κ novelty probability
Global: Sπ Performance selection function, Sν Novelty selection function

1: P ′ ← ∅ . New population
2: for i ∈ [1, . . . , |P |] do . Select an Individual
3: k ←∼ U([0, 1]) . Uniform random value
4: if k < κ then . Get selection measurement
5: P ′ ← P ′ ∪ Sπ(P,C) . Performance based lexicase selection
6: else
7: P ′ ← P ′ ∪ Sν(P,C) . Novelty based selection Alg. 2

8: return P ′ . Return new population

4 Experiments

This section presents experimental setup, and results and discussion.

4.1 Setup

In order to focus on the potential of explicit diversity control, we selected a small
subset of problems from the general programming synthesis benchmark suite [1].
As our intent was not to match the previous standards set by related work done
by PUSHGP[20] or G3P[3], but rather to explore the effect of explicit diversity
control, we decided to use a fitness evaluation budget of 3.0×104, a budget that
is less than one sixth of the budget used by PUSHGP, and one tenth the budget
used in G3P. In doing so, we restrict the number of problems that our system
is able to solve, but we significantly increase our investigative agility. To choose
which problems to use in our experiments, we first ran a series of tests with the
decreased fitness evaluations on many of the benchmark problems, and chose
three that provided a range of difficulty. These tests were done with GE and
lexicase selection. We selected one easy – Median (MED), another moderately
difficult – Smallest (SML), and a third hard – String Lengths Backwards (SLB).
Per convention, the I/O dataset is split in two, one used during evolution, the
training set, and one for out of sample testing, the testing set. For each of our
selected problems, the training set consists of 100 test cases and the testing set
consists of 1000 test cases.
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Algorithm 4 Grammatical Evolution with Knobelty Selection
Parameters: KC: knob control method ∈ Static, Dup Adapt,Gen Adapt

1: P ← ι() . Initialize population
2: C ← ∅ . Initialize cache
3: if KC = Static then . Static κ
4: κ← k . Set κ to a static value
5: f(g(P )) . Map and evaluate population
6: C ← C ∪ P . Add population to cache
7: for t ∈ [1, . . . , T ] do . Iterate over generations
8: if KC = Gen Adapt then . Generation based κ update
9: κ← 2−λt . Update κ based

10: if KC = Dup Adapt then . Duplication sensitive κ adaptation
11: κ← ∆(inefficiency(P ), inefficiency(Pt−1)) . Update κ, see Sec 3.3

12: P ′ ← S(P,C, κ) . Knobelty Selection, Alg. 3
13: P ′ ← χ(P ′) . Crossover individuals
14: P ′ ← µ(P ′) . Mutate individuals
15: f(g(P ′)) . Map and evaluate population
16: C ← C ∪ P ′ . Add population to cache
17: P ← P ′ . Replace population

18: return max(C) . Return best performing solution

We report results on 100 runs. We report program synthesis performance in
terms of how many runs out of 100 resulted in one or more programs that solved
all the out of sample (test) cases. All other reported values are averages over 100
runs. We ran all experiments on a cloud VM with 24 cores, 24GB of RAM, and
16GB of disk.

To determine an efficient population to generation ratio, we swept the ratios
while keeping fitness evaluations constant and found that a population size of
1500 with 20 generations produced better results on all three problems than
other ratios. This contrasts significantly with the population to generation ra-
tio that PUSHGP and G3P use, with our ratio of population size:generations
1500:20 = 75:1 vs PUSHGP and G3P of 1000:300 = 3.3:1. We believe that this
is another example of diversity having an impact on performance. When choos-
ing the original population the seeding operator is able to effectively space out
individuals throughout the search space. Our results imply that this high initial
diversity followed by a small number of generations to evolve is more effective
than a smaller and thus less diverse initial population that has more generations
to evolve.

Our implementation originates from the grammar based genetic program-
ming repository PonyGE2 [34]. Building on PONYGE2, we added lexicase se-
lection to create a conventional GE algorithm for program synthesis that uses
lexicase selection. This algorithm, GE Perf, uses performance based selection.
We then designed and developed our various knobelty algorithm variants (see
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Table 1: Baseline performance for different GP variants on the MED, SLB and
SML program synthesis problems. N.B. GE uses an order of magnitude lower
fitness evaluation budget.

Test Performance
Heuristic MED SLB SML

GE Perf 85 8 74
G3P [3] 79 68 94
PUSHGP [20] 55 94 100

Algorithm 4 and Table 3)2. The set of parameters we used throughout all our
experiments is listed in Table 2.

Table 2: Experimental settings
Parameter Value

Codon size 100,000
Elite size 15 (0.01P )
Replacement generational
Initialisation PI grow
Init genome length 200
Max genome length 500
Max init tree depth 10
Max tree depth 17
Max tree nodes 250
Max wraps 0
Crossover single point
Crossover probability 0.9
Mutate duplicates False
Mutation int flip
Mutation probability 0.05

Novelty archive sample size (C) 100
Novelty tournament size (ω) 7

Table 1 presents the program synthesis performance of our baseline algorithm
GE Perf with those reported by PUSHGP and G3P, for each of the three test
cases we chose. All three algorithms use lexicase selection. The “Perf” is implicit
in PUSHGP and G3P, as they are both entirely concerned with performance.
We make it explicit in GE Perf since we will later use GE for our knobelty

algorithms.
Regarding the test performance of the baselines, bear in mind that GE Perf

uses between 1/6th and 1/10th fitness evaluations per run compared to PUSHGP
and G3P. With this handicap, it performs moderately worse on SML, signifi-
cantly worse in SLB, but is actually able to outperform the other approaches on

2 The code is available at https://github.com/samnovelty/noveltyprogsys
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MED. From this point forward, we will solely use the results from GE Perf as
our baseline.

Table 3: knobelty algorithm variants, see Algorithm 4
Abbreviation Explanation

GenoNovelty GE with Knobelty selection using genotype novelty approximation
DTreeNovelty GE with Knobelty selection using derivation tree novelty approximation
PhenoNovelty GE with Knobelty selection using phenotype novelty approximation
OutputsNovelty GE witn Knobelty selection using standard outputs novelty approximation

All knobelty algorithm variants approximate novelty with Algorithm 1.
One of its parameters is the distance measure it uses. We abbreviate the vari-
ants by this distance measure, see Table 3. The approximation’s sampling size
of 100 was experimentally set by a sweep that identified the lowest size that
is stable over 1000 sample tests. The tournament size of knobelty selection
tournaments is ω = 7. For the exponentially decreasing novelty, we used λ =
Number of Generations/10 = 2. We did no experimentation with the range of
λ.

Experimental Approach We proceed in two steps.

1. We set κ = 1.0 and run OutputsNovelty to closely approximate the spirit of
the original novelty[5]. We consider how this compares to GE Perf, our base-
line. Then, with κ = 1.0, we try DTreeNovelty, PhenoNovelty, GenoNovelty
and compare to GE Perf and OutputsNovelty.

2. We then use DTreeNovelty with Static knob control to conduct a sensitivity
analysis of κ by sweeping it across a range of values for the MED problem.
We look at program size, duplication, best performance and novelty. Then we
run all three problems (MED, SLB and SML) using two novelty algorithms -
DTreeNovelty, OutputsNovelty, with 3 knob controls – Static, Gen Adapt

and Dup Adapt.

4.2 Results

Proceeding with step 1, Table 4 compares GE Perf to PhenoNovelty, GenoNovelty,
DTreeNovelty abd OutputsNovelty, run with a κ of 1.0, i.e. “pure” novelty.
From these results, we can draw three insights. The first is that using pure
novelty search with DTreeNovelty, PhenoNovelty, and GenoNovelty is unsuc-
cessful. This observation is arguably to be expected. Genotypes in GE do not
express behavior. Derivation trees and the programs defined by their leaves ex-
press behavior, but there is a many to one mapping between program and output
behavior, so the search space of derivation trees and program overwhelms search
based on novelty. The second observation is that OutputsNovelty, in contrast,
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does reasonably well, beating the baseline on two of the three problems. This can
be explained by the observation that, while OutputsNovelty is not directly re-
lated to fitness, taking the Hamming Distance between two solutions’ binary test
case error vectors expresses their relative performance. Novelty search is favoring
different but mutually compatible solutions that could be combined successfully
with crossover. In fact, Figure 1, which plots the average novelty at each gen-
eration for OutputsNovelty (1a), DTreeNovelty (1b), and GE Perf (1c), shows
an inverse correlation between the output novelty and error trajectories. Since
lower values of error are better, we observe that increasing OutputsNovelty also
relates to better fitness. This finding is strengthened because for two out of three
test cases, OutputsNovelty leads to better performance than GE Perf.

Table 4 and Figure 1 present inefficiency. Inefficiency is the ratio of the
number of duplicate solutions to the product of number of fitness evaluations and
generations. The third insight from Table 4 is that the inefficiency of GE Perf is
significantly higher then that of PhenoNovelty and DTreeNovelty. This means
that GE Perf can’t generate novel solutions, while searching based on novelty
can. While pure DTreeNovelty or PhenoNovelty fail, their ability to effectively
explore the search space motivates the exploration of a combination of GE Perf

and novelty. Since DTreeNovelty is the algorithm that is the least inefficient,
and thus explores the most solutions, and OutputsNovelty performs well on two
of the three problems, we decide to move forward with them in our knobelty

experiments.

Table 4: (Pure) Novelty Experiments. We set κ = 1.0 and run OutputsNovelty,
DTreeNovelty, PhenoNovelty, GenoNovelty. We show GE Perf, our baseline
which uses performance based selection, for comparison, above each problem’s
results.

Fitness Novelty (Total)
Problem Distance – knobelty Alg Train Test Time Ineff. Geno. Pheno. DT Ave size

MED GE Perf 86 85 789.34 71 0.89 0.29 9.73 24.52
MED genotype – GenoNovelty 0 0 848.71 74 1.00 0.27 7.54 13.02
MED phenotype – PhenoNovelty 0 0 1392.13 26 0.99 0.53 16.12 46.88
MED derivation – DTreeNovelty 0 0 785.11 19 0.99 0.47 25.15 62.47
MED outputs – OutputsNovelty 5 5 600.95 64 0.98 0.28 8.78 22.58

SLB GE Perf 8 8 1446.47 67 0.95 0.22 7.55 22.80
SLB genotype – GenoNovelty 1 1 2039.14 67 1.00 0.18 6.67 14.06
SLB phenotype – PhenoNovelty 0 0 2335.94 36 0.99 0.39 11.85 37.28
SLB derivation – DTreeNovelty 0 0 2890.80 21 0.99 0.34 19.57 51.34
SLB outputs – OutputsNovelty 13 13 2120.16 53 0.98 0.23 7.89 23.78

SML GE Perf 74 74 1350.96 81 0.93 0.30 8.45 19.68
SML genotype – GenoNovelty 0 0 918.89 73 1.00 0.27 7.53 13.16
SML phenotype – PhenoNovelty 0 0 1019.02 26 0.99 0.53 16.08 47.23
SML derivation – DTreeNovelty 0 0 841.54 19 0.99 0.47 24.91 63.60
SML outputs – OutputsNovelty 97 97 421.48 56 0.96 0.30 10.02 28.56

We now proceed with step 2, where we start by analysing DTreeNovelty

with Static knob control. We conduct a sensitivity analysis of κ by sweeping it
across a range of values from 0.0 to 1.0 on 0.1 intervals for the MED problem.
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Fig. 1: Measurements per generation for MED. Y-axis is normalized measurement
value and x-axis shows generation. Average and standard deviation over 100
runs.
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Figure 2 shows the results from these experiments. We can see that with low val-
ues of κ the performance improves compared to our baseline GE Perf (κ = 0.0),
confirming our hypothesis that pairing fitness selection with novelty selection
can improve performance. The parameter setting of κ = 0.2 seems to display
the best trade-off in performance, efficiency and novelty. As expected, average
program size and novelty, specifically DTreeNovelty, increases as κ increases,
and inefficiency decreases.
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Fig. 2: Sensitivity analysis of κ constant for knobelty selection for the MED
problem. Y-axis shows ratio value and x-axis shows κ. One line is performance,
one line is DTree novelty, one line is inefficiency. The κ = 0.2 seems to display
the best trade-off in performance, efficieny and novelty

We select κ = 0.2 to go forward and we run all three problems (MED,
SLB and SML) using the two novelty algorithms we picked from analysis of
Table 4 – DTreeNovelty, OutputsNovelty. We ran the experiments with all
three ways to set the parameter κ that controls the balance between using novelty
based and performance based selection – Static, Gen Adapt and Dup Adapt.
Table 5 shows the results obtained from these experiments. We see from these
results that in all cases, using knobelty selection based on either DTreeNovelty
or OutputsNovelty does better than our GE Perf. We also see that despite the
fact that OutputsNovelty did significantly better when run with a κ of 1.0 than
DTreeNovelty (Table 4), when κ is less than 1.0, i.e. when each uses parents
selected with a mixture of novelty and performance, they produce similar results.
We also see that three of the algorithm plus κ control combinations yield perfect
solutions 100% of the time. The DTreeNovelty algorithm for Dup Adapt solves
SML and MED perfectly, and the OutputsNovelty algorithm for Gen Adapt

solves SML perfectly. Additionally, on SLB, the number of test cases solved by
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just GE Perf is increased by 100 percent by many of the algorithm and control
combinations. These results on three problems strongly support our hypothesis
that explicit diversity control can play a role in improving performance. They
suggest going forward with more problems, and doing a more comprehensive
comparison that includes other methods.

Table 5: Two knobelty algorithms, one basing novelty on derivation trees and
the other on outputs are compared on the three problems for the three different
ways to control the knobelty knob.

Test Performance
Algorithm Control of κ MED SLB SML

GE Perf - 85 8 74

DTreeNovelty Static, κ = 0.2 +9 +10 +24
OutputsNovelty Static, κ = 0.2 +12 +7 +23
DTreeNovelty Dup Adapt +15 0 +26
OutputsNovelty Dup Adapt +12 +13 +22
DTreeNovelty Gen Adapt +11 +10 +24
OutputsNovelty Gen Adapt +12 +9 +26

In the next section we conclude and present possible directions for future
work.

5 Conclusions & Future Work

The contributions of this paper are:
1. We introduce a computationally tractable approximation of novelty for

GP. It samples the cache rather than exhaustively referencing every item in it.
This dispenses with a complex cache management policy.

2. We introduce novelty measures on genotype, derivation tree and program
representation domains for GE.

3. Using these measures, we explore GE with a conventional performance
objective, pure novelty, and knobelty for program synthesis.

4. We find evidence that knobelty can successfully balance a population’s
proportions of novel and high performing solutions, thus program synthesis can
be improved in performance accuracy, speed and efficiency. Since these successful
results are only based on three judiciously chosen problems, further investigation
is merited.

There are a number of possible directions for future work. One is to mutate
duplicate solutions, to increase the search space visited and drive the inefficiency
to zero. Another is to evaluate the knobelty operators across more problems,
with an increased number of fitness evaluations. These results would then be
comparable with the results of PUSHGP and G3P. A third is to try knobelty

with tree based operators and see how the results compare. In these tree based
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experiments, the effect that novelty has on bloat would be especially interesting
to monitor, as tree based operators are known to have problems with bloat.
Finally it would be interesting to investigate other representations of program
behavior, including program traces, and other static program and derivation tree
representations.
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