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Chapter 1

Introduction

Optimizing the performance of a program is a time-consuming process. Often the

optimal configuration of a complex program under given conditions cannot be easily

determined manually. Moreover, introduction of performance-boosting technologies

such as parallelization creates additional tuning problems that can be beyond the

expertise of the application developers.

To address this problem, many applications choose to abstract away performance-

sensitive parameters and incorporate program auto-tuners to search for optimal values

for these parameters. These auto-tuners are usually internal to the specific applica-

tions and adopt specific search methods.

OpenTuner is an application-general program auto-tuner that brings together

these efforts of individual auto-tuner developments. It features a flexible problem

representation scheme and a diverse bank of built-in search strategies.

The thesis focuses on enhancing OpenTuner’s search power on discrete-valued tun-

ing problems. We achieve this mainly by introducing the populated-based stochastic

optimization (PBSO) methods to OpenTuner. PBSO methods have shown good per-

formances on discrete optimization problems found in other fields such as operational

research. We perform tuning experiments on selected target programs and show that,

depending on the type and size of the parameter space in question, different levels of

performance boosts can be achieved,
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Chapter 2

Related Works

2.1 Program Autotuning

Optimizing or tuning a computer program is not an easy task. To optimize, there are

often numerous applicable algorithms and techniques to choose from, each of which

is suitable for a particular use case, and each algorithm usually has a number of

parameters that can be adjusted for the specific application. Furthermore, real-world

applications are usually composed of many subprograms each of which can execute in

different orders and which have different parameters with which to tune them. When

the input is large, we have additional parameters to determine for parallelization,

such as those which control granularity.

In the context of this thesis, Configuring a program means fixing the values of all

the optimization parameters in the program, and the configuration of a program is

the collection of these parameter values. Tuning a program by hand is usually very

time-consuming and demands expertise that can be beyond the program’s creator. For

example, one researcher who specializes in signal processing does not necessarily know

how to efficiently sort a big array using the machines she processes, yet optimizing

the sort routine may give a big boost to her signal processing application and saves

her precious research time.

Program autotuners are systems that automatically search for optimal configu-

rations for the target programs - the programs that demand tuning - using estab-
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lished optimization algorithms. One of the pioneer program autotuners is Halide, an

autotuner-compiler that uses stochastic search to tune image processing programs. It

finds optimal ”schedules” for running image processing pipelines consisting of many

stages and branches and achieves a tuning performance that surpasses hand-tuning

with much less time [10]. Another autotuning system, Petabricks, is concerned with

the situation where a program is composed of procedures each with multiple algorith-

mic choices as well as parameter values, which was shown able to achieve near-optimal

performance[1].

Very recently, Jason et al proposed OpenTuner [2], an all-purpose program au-

totuner that can work on different application domains. As the foundation work for

this thesis, it will be described briefly in the next section.

2.2 OpenTuner

OpenTuner has the following features:

Flexible problem domain representation OpenTuner is designed to be able to

flexibly represent program configuration from different application domains.

Ensemble technique OpenTuner introduces bandit meta-techniques which allows

several different optimization algorithms to to be explored and evaluated to

favor using the one more likely to provide the best optimization. The meta-

technique takes care to balance exploitation and exploration when applying the

base techniques.

Asynchronous search management Both generation and evaluation of new pro-

gram configurations occur asynchronously. This makes tuning efficient and

parallelizable.

Multi-objective search capability Instead of optimizing for a single objective,

OpenTuner can handle multiple objectives, e.g. minimizing execution time and

maximizing some user-defined score at the same time.

10
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Array 
Parameter

Boolean Array 
Parameter

Figure 2-1: Existing parameter classes in OpenTuner

2.2.1 Problem space representation

In order to flexibly express the tuning problems from across different applications,

OpenTuner provides users with a bank of elementary data types, or parameters, as

shown by 2-1. Each Parameter class has by default randomize function and the

numeric parameters have additional linear operations defined.

Tuning a target program involves interaction among three OpenTuner components

- the search module, the measurement module, and the OpenTuner database. The

search module is responsible for searching and creating new program configurations

while the measurement module evaluates the configurations. The database serves as

an archive, recording optimization attempt details.

2.2.2 Workflow

The tuning process of OpenTuner proceeds as follows. To begin, the search driver calls

the search technique to obtain a new configuration. The search techniques are imple-

mented in the form of generators, which means that, when a search technique finds a

new solution, its optimization routine is paused and the technique returns control to

its caller - the search driver. The search driver then labels the new configuration as

“to-be-evaluated”, stores it in the OpenTuner database, and calls the measurement
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Figure 2-2: Workflow of the original OpenTuner system.

driver for evaluation. The measurement driver retrieves from the database configu-

rations that bear evaluation request labels, compiles the target program with these

configurations, re-labels these configurations as “completed”; after the program has

executed with the configuration, the measurement driver sends the performance scores

back to the database. The search driver waits until the evaluation is completed. It

then checks the convergence criteria. If convergence condition is not met, the previous

steps are repeated - the search driver again calls the search technique; the technique

resumes its optimization routine from where it stopped last time and runs until the

next solution is created, etc.. Thus the process goes on. A schematic of the workflow

is shown in figure 2-2.

The performance measure of a configuration is usually the execution time of the

target program compiled under this configuration. If the execution takes too long, the

program is terminated early and its execution time is set to infinite. When the search

techniques needs to access the performance measure of an old solution, it retrieves it

from the database.

2.2.3 Existing search techniques

All existing search techniques in OpenTuner are iterative optimization methods that

continuously produce candidate solutions with increasing qualities. Existing tech-

niques include simplex methods, differential evolution, simulated annealing, pattern
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search, and random search.

In addition to specific optimization methods, the original OpenTuner also imple-

ments meta-techniques which simultaneously run several different optimization algo-

rithms. In particular, the bandit meta-technique is an ensemble technique that let

different base techniques take turns to run. This meta-technique dynamically adjusts

priority of each base technique in the ensemble during the search according to its

performance. The prioritized techniques will run more often to exploit its search ca-

pability, while the techniques that are not performing are let to run occasionally. The

use of a bandit technique prevents the tuning from being stuck in local optimums

that are created by running a single particular search algorithm.

2.3 Difficulty of complex tuning spaces

One particular difficulty of program auto-tuning is the complexity of the configura-

tion search space. As a program’s configuration involves many parameters of differ-

ent types, the search space of program configuration is usually compound of different

types of subspaces. Beside continuous and discrete numeric values, a program’s con-

figuration often involves ordinal choices, permutations, schedules, and graphs with

even more complicated constraints. For examples, a simple sort routine can involve

first choosing a sort algorithm that is suitable for the problem from available algo-

rithms such as mergesort and quicksort. Many algorithms have numerical parameters

that need to be further tuned. For example, when sorting a big array, brute-force

algorithms may be more appropriate at lower levels, where the input is divided into

small batches to be sorted individually; when all batches are sorted, mergesort can

come in to sort the whole input array - the choice that we need to make is at which

stage to change the search algorithm. Lastly, when the input is large and paralelliza-

tion is required, the routine may need a composition of sub-algorithms, each of which

has its own parameters to tune, thus the composition and sub-parameters needing to

be optimized together in order to efficiently execute the task.

In image processing, for example, a program is often a pipeline of many different

13



tasks, some of which can be performed in parallel while some have dependencies on

one another; furthermore, each individual task itself requires paralellization that need

to be configured.

Most well-established gradient-based optimization techniques cannot be directly

applied to solve these auto-tuning problems, if at all. On discrete spaces such as

boolean, permutation, and graphs, the notion of gradient usually cannot be appro-

priately defined, or even approximated. The mixture of different spaces also makes

it difficult to apply these methods.

The difficulty is partially handled by the original OpenTuner. Although no mean-

ingful linear operations can be used on complex parameters, random perturbation

and an appropriate selection scheme make it possible to search these discrete spaces.

Pattern search is a basic algorithm that is derivative-free and has good convergence.

First, a tentative solution is randomly initialized in the problem space. Then, at each

iteration, new solutions are generated by ”stepping away” from the old solutions at

each dimension: if one of the new solutions outcompete the old, it is passed on to the

next generation; if not, the step size is shrunk and the iteration restarts [4]. Simplex

methods - specifically Nelder-Mead method - works similarly except that a ”simplex”

of D + 1 points instead of a single point is maintained throughout the search. The

worst point in the old simplex is ”reflected” across the centroid of the other vertices to

generate a new vertex: if the new vertex is an improvement, it replaces the old vertex

and the simplex expands towards the new vertex; otherwise, the simplex is shrunk

[9] . In both of these methods, randomization replaces the neighbourhood motion

(stepping and reflecting) in the case of complex parameters since linear operation is

not defined.

Apart from being gradient-free, these methods are preferred because of their iter-

ative property. In the case of program auto-tuning, near-optimal solutions produced

within reasonable time limit is much more useful than exact optimums that take

unacceptably long time to find.

However, the existing techniques still have the drawback that complex parame-

ters cannot make meaningful movements in the search space, and the search can be

14



trapped in local optima easily.

A family of optimization methods that have proved to be effective in similar situa-

tions in operational research are the population-based stochastic optimization (PBSO)

algorithms. Instead of a small set of candidate solutions, these algorithms maintain a

large, diverse population of solutions to make the optimization robust. When gener-

ating new solutions, PBSO techniques introduces randomness which further prevents

the problem of local optima.
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Chapter 3

Design Proposal

3.1 Goals

The primary goal of this thesis is to extend OpenTuner to enhance its searching capa-

bility on complicated domains. We do this by introducing population-based stochastic

search optimization (PBSO) methods. Specifically, the extension improves Open-

Tuner’s tuning performance on integer, boolean, and permutation tuning domains.

Our secondary goal is to separate parameter-specific stochastic operators from the

parameter-independent PBSO algorithm logics in our implementation. A PBSO al-

gorithm should be able to easily switch between different stochastic operators, and

a stochastic operator should be accessible by different PBSO algorithms. We should

also be able to compose many variants of a PBSO algorithm by ”plugging in” differ-

ent stochastic operators, and we should be able to modify or add PBSO technqiues

without reimplementing existing stochastic operators.

3.2 Overview

We implement the PBSO functionality for OpenTuner by extending the search module

of the original OpenTuner. We create the PBSOSearchTechnique classes which inherit

OpenTuner’s original SearchTechnique class, and we add stochastic operators as new

methods of subclasses of the parameter class. A PBSO technique can be combined
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with different stochastic operators to construct different technique variants.

Figure 3-1: The PBSO extension for OpenTuner. The PBSOSearchTechnique class
inherits SearchTechnique. The parameter class is extended to include stochastic
operators. See figure 2-2 for the original OpenTuner framework.

Figure 3-1 illustrates our PBSO extension. A PBSO technique maintains a col-

lection of candidate solutions called the population. The optimization proceeds by

iteratively improving the population. The technique first initializes the population,

and then enters a loop consisting of three stages - parent retrieval, stochastic repro-

duction, and population update.

During parent retrieval, a small number of candidate solutions are taken out of the

population as parents. The stochastic reproduction stage is composed of one or more

stochastic operators, which recombine the parents and produce a child solution. After

enough repetitions, the entire population is replaced by child candidate solutions and

a new generation is created.

18



Every stochastic operator is originally innate to a particular PBSO algorithm.

This extension decouples the stochastic operators from their original algorithms and

share them among all PBSO techniques when compatible. On any given tuning

problem, i.e. the involved parameters are specified, the compatibility between an

parameter operator and a PBSO technique is determined solely by the number of

parent candidates required by the technique’s reproduction stage. For example, the

innate operator for PSO is the three-input operator PSO-recombination and for

DE it is the three-input operator DE-recombination. Since the same number of

parents are required, PSO can use DE-recombine instead of DE-recombination

for its reproduction.

We will now describe in detail the PBSO techniques and stochastic operators

implemented in the extension.

3.3 PBSO techniques

In this thesis we implement three representative PBSO algorithms, namely Genetic

Algorithm (GA), Particle Swarm Optimization (PSO), and Differential Evolution

(DE). The techniques are specified in terms of the four algorithmic stages as in figure

3-1, namely population initialization, parent retrieval, stochastic reproduction, and

population update.

As described in 2.2.2, in the original OpenTuner every new candidate solution

is evaluated right after it is produced, before the search technique proceeds to the

next stages. Therefore, in the technique descriptions below, we assume that the

performance score of each candidate solution is always known when the technique

needs them. 1

We provide a summary of the techniques in table 3.1.

1In the original OpenTuner, it is possible to paralellize the evaluation i.e. the search technique
would yield a batch of candidate solution s instead of only one before requesting evaluation. In this
extension, such parallelization is disabled, because some PBSO techniques need to access the scores
of all existing candidate solution s when it produces a new candidate solution.
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stage GA PSO DE
Population
Initiation

random random random

Parent
Selection

p1, p2 are randomly
selected from popula-
tion based on fitness
scores.

p1 is yielded by
population iterator;
p2 is the historical
optimum of p1; p3
is the population’s
global optimum

p1 is yielded by
population itera-
tor; p2, p3, p4 are
randomly selected
from population

Stochastic
Reproduction

Population
Update

The whole population
is replaced when
enough children are
generated.

p1 is replaced by p′. p1 is replaced by p′.

Table 3.1: Summary of the proposed PBSO techniques. X1, X2, X3 represents
required operators which take one, two, and three parents respectively.

3.3.1 Genetic Algorithm

GA mimics the phenomena of biological evolution, where a community of organism

evolve to become fitter under the pressure of natural selection.

Main algorithm

1. Population Initiation The initial population is created by randomly sampling

the search domain.

2. Parent Retrieval Two parents p1, p2 are randomly selected from the popula-

tion based on their fitness scores. Specifically, we use the Stochastic Universal

Sampling proposed by Baker for the parent selection, which ensures that higher-

scored candidates are more likely to enter the new generation while leaving rea-

sonable chance to less fit candidates. Fitness scores of candidate solutions are

based on the rankings of their raw performance scores. Specifically, the fitness

score of candidate i is 1/sqrt(ri), where ri is the rank of i [3]. In practice this
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is important for difficult tuning problems when the objective is to minimize the

execution time of the tuned program. During the initial stage of tuning, most

candidates lead to very slow programs that need to be killed before finishing,

thus receiving 0 scores from the evaluator. Using the rank rather than the raw

scores as the fitness measure prevents the population manager from eliminating

these candidates prematurely during selection.

3. Stochastic Reproduction Two parents candidates p1, p2 are processed by an

two-input stochastic operator followed by a one-input stochastic operator to

yield the child candidate solution p′.

4. Population Update The population is entirely replaced by child candidate

solutions when the number of child candidates reaches the designated population

size.

3.3.2 Particle Swarm Optimization

Particle Swarm Optimization (PSO) simulates the process that a swarm of particles

seek for the globally optimal point in the search space. A candidate solution is

represented by the position of a particle. In addition to the particle positions, PSO

keeps track of these following states during the search:

gbest: best candidate solution found by the entire population

pbesti: best candidate solution found by particle i for all i

vi: (optional) velocity of particle i for all i

Main algorithm

1. Population Initiation The population is initialized randomly.

2. Parent Retrieval A circulator population iterator2 yields the particle indexed

2An iterator that passes through all members of the population in order and returns to the first
member after it reaches the last.
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i. The primary parent p1 is set to be the position of particle i. Two auxiliary

parents are set to be p2 = gbest and p3 = pbesti.

3. Stochastic Reproduction A three-input stochastic operator transforms the

three parents p1, p2, p3 into a child candidate solution p′. Velocity of the particle

i is updated optionally.

4. Population Update Every particle’s position, i.e. the primary parent, is up-

dated to the child candidate solution p′ found in reproduction.

3.3.3 Differential Evolution

Differential evolution takes the idea of evolution and use the differences between

population members to determine the degree of stochastic variation applied in repro-

duction.

Main Algorithm

1. Population Initiation The population is initialized randomly.

2. Parent Retrieval A primary parent p1 is yielded by a circular population

iterator as in PSO. In addition, three auxiliary parents p2, p3, p4 are randomly

picked from the population.

3. Stochastic Reproduction A three-input stochastic operator is first applied to

p2, p3, p4 to produce an intermediate child z. A two-input stochastic operator

then transform p1 and z into the final child p′.

4. Population Update Every primary parent p1 is replaced by its child p′ found

in reproduction.

3.4 Stochastic Operators

In the stochastic reproduction step of PBSO techniques, we need stochastic operators

that handle different parameter types. These stochastic operators are decoupled from
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the main PBSO algorithms in our implementation.

In this extension we develop stochastic operators that operator on four parameter

types, namely float, integer, boolean, and permutation. We focus on the latter three

discrete types since our goal is to improve OpenTuner’s performance on discrete

problem domains.

3.4.1 Float Operator

A parameter whose value is continuous has the following stochastic operators:

F1 Additional noise A scaled Gaussian noise is added to the parameter’s value.

F2 2-way choice One of the two parent float values is chosen at random.

F3.1 3-way choice One of the three parent float values is chosen at random.

F3.2 PSO-recombination Give constants c1, c2, c3 and velocity v, three parent

float values p1, p2, p3 are recombined in the following manner:

v′ = v ∗ rand() ∗ c1 + (p2 − p1) ∗ rand() ∗ p2 + (p3 − p1) ∗ rand() ∗ c3 (3.1)

p′1 = p1 + v′ (3.2)

where rand() generates a random float in the range [0, 1]. When applied in the

original PSO algorithm, this operator updates the position of a particle from p1

to p′1 (equation (3.2)) and velocity from v to v′ (equation (3.1)). When applied

to other PBSO algorithms which do not maintain velocities, we simply set v = 0

in equation (3.1).

F3.3 DE-recombination Given three candidate solutions p1, p2, p3, this stochastic

operator creates a mutant z by perturbing p1 with a force proportional to the

difference between p2 and p3 as follows:

z = p1 + F (p2 − p3) (3.3)
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where F is a scaling constant.

3.4.2 Boolean Operators

A parameter whose value is either 1 or 0 has the following stochastic operators:

B1 Random flip The parent boolean value is flipped with certain probability.

B2 2-way choice One of the two parent boolean values is chosen at random.

B3.1 3-way choice One of the three parent boolean values is chosen at random.

B3.2 PSO-recombination Kennedy and Eberhart adapted stochastic operator F3.2

for boolean values by modifying the position update equation (3.2) of operator

F3.2 as:

x′1 = 1[rand() < σ(v′1)] (3.4)

The velocity is transformed into a value in the range [0, 1] through the sigmoid

function σ(x) = 1
1+e−x and used as a probability to determine the new particle

position. The velocity update equation (3.1) remains the same [8].

B3.3 DE-recombination With a similar probabilistic interpretation as B3.2, we

adapt stochastic operator F3.3 for the boolean domain as follows:

z =

p1, if p2 = p3,

f(p1), if p2 6= p3

(3.5)

where f is the random flip operator B1. This adaptation preserves the difference-

based variation property of F3.3 in that p1 is altered only if p2 and p3 differ.

3.4.3 Integer Operators

A parameter whose value is an integer in the range of [M,N ] has the following oper-

ators:
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I1 Additional noise A scaled Gaussian noise is added to parent integer value p,

followed by bounding and rounding:

n ∼ N(p, γ(M −N − 1)) (3.6)

p′ =


M, if n > M

N, if n < N

round(n), if N ≤ n ≤M

(3.7)

I2 2-way choice One of the two parent integer values is chosen at random.

I3.1 3-way choice One of the three parent integer values is chosen at random.

I3.2 PSO-recombination Veeramachaneni adapted stochastic operator F3.3 for the

bounded integer domain. Velocity update equation (3.1) remains the same. The

original position update equation (3.2) is modified as

p′ = f(
M −N
1 + e−v′

) (3.8)

where f is operator I1. This operator transforms the updated velocity v′ into the

range of [N,M ] through a sigmoid function, perturbs it with a scaled Gaussian

noise, and then sets it as the new particle position [11].

I3.3 DE-recombination We modify F3.3 by simply applying a scaled Gaussian

noise:

z = f(p1 + F (p2 − p3)) (3.9)

where f is operator I1.

3.4.4 Permutation Operators

A parameter whose value is a permutation, i.e. an ordered list of unique elements,

has the following operators:
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P1.1 Shuffle The whole permutation list is shuffled.

P1.2 Random swap Two random elements of the permutation are swapped.

P1.3 Random invert Treating the permutation as a path, a randomly chosen sub-

path is inverted.

P2.1 2-way choice One of the two parent permutations is chosen at random.

P2.2 Order Crossover The child first inherits a random subpath from one parent;

the elements outside the subpath are then arranged according to their orders in

the other parent [6] [5].

P2.3 Permutation Crossover The elements in a random subpath of one parent is

re-arranged according to their order in other parent [12].

P2.4 Partially-Mapped Crossover Two random cut points are first selected on

the permutation array. Subpaths between the cut points from the two par-

ents form a mapping. The parents then exchange the subpaths, creating two

children. If one child is valid, i.e. the permutation does not contain repeated

elements, it is returned. Otherwise, each repeated element is substituted by the

element that it is mapped to in the subpath mapping [7].

P3.1 3-way choice One of the three parents permutations is chosen at random.

P3.2 Conditional Order Crossover This operator is constructed from P2.2 as

follows:

p′ =


p1, if r ≤ c1

p1 ⊗ p2, if c1 < r ≤ c1 + c2

p1 ⊗ p3, if c1 + c2 < r < c1 + c2 + c3

(3.10)

where constants c1, c2, c3 are normalized to 1, r = rand(), and ⊗ represents

P2.2.

P3.3 Conditional Permutation Crossover This operator is also constructed us-

ing equation (3.10), except that ⊗ represent P2.3.
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PBSO
technique

required
operator

parameter-specific operator choices
float boolean integer permutation

GA
X2 F2 B2 I2 P2.1 - P2.4
X1 F1 B1 I1 P1.1 - P1.3

PSO X3 F3.1 - F3.3 B3.1 - B3.3. I3.1 - I3.3 P3.1 - P3.4

DE
X3 F3.1 - F.3.3 B3.1 - B3.3. I3.1 - I3.3 P3.1 - P3.4
X2 F2 B2 I2 P2.1 - P2.4

Table 3.2: List of PBSO technique variants constructed by applying different oper-
ators for each parameter. X1, X2, X3 represents required operators which take one,
two, and three parents respectively.

P3.4 Conditional Partially-mapped Crossover This operator is also constructed

using equation (3.10), except that ⊗ represent P2.4.

3.5 Construct PBSO Technique Variants

As stated before, a PBSO technique requires one or more stochastic operators dur-

ing its stochastic reproduction stage. In this extension, we enable operator sharing

among PBSO techniques, which means that a stochastic operator innate to a cer-

tain algorithm can be applied to others as long as the number of required parents

agrees. For example, operator P2.x or the crossover operators are designed for GA

but can be used by DE as well. Thus we can create a large set of PBSO technique

variants by combining different techniques with different stochastic operators. Table

3.2 enumerates possible PBSO variants for each of the four parameter types.

When tuning a configuration that contains only one type of parameters, the num-

ber of variants for a PBSO technique is the product of the number of choices for all

its required operators. For a pure float-valued configuration, for example, GA has

only one choice for each of its required operators (F2 and F1), which multiply to 1

GA variant. On the other hand, for a pure permutation-valued problem, DE has 4

choices for its three-input operator (P3.1-P3.4) and 4 choices for the two-input oper-

ator (P2.1-P2.4), which multiply to 16 total DE variants. See table 3.3 for a full list

of PBSO variant counts.

In practice, the configuration in question is usually a mix of different parameter
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PBSO technique float boolean integer permutation
GA 1 1 1 12
PSO 3 3 3 4
DE 3 3 3 16

Table 3.3: Counts of PBSO variants for each parameter type.

types. In this case, a PSBO technique would need to select its operators for every

involved type, thus the number of variants it could have becoming the product of its

variants for individual types. For example, to tune a configuration that contains only

boolean and permutation parameters, we have 1 × 12 = 12 GA variants, 3 × 4 = 12

PSO variants, and 3 = 48 DE variants.

3.6 Extending PBSO Techniques

3.6.1 Adding a PBSO technique

A new PBSO search technique should inherit PBSOSearchTechnique class and im-

plements the following methods:

1. init pop returns an population. The returned value is used as the initial pop-

ulation.

2. get parents given the population, return a set of candidate solutions. The

returned value is used as parents.

3. update pop given a number of candidate solution and the population, update

the population.

In addition, the class field reproduction ops should be set to specify the stochas-

tic operators required by the new technique.

3.6.2 Adding a stochastic operator

The stochastic operators are implemented as class methods of the parameter classes.

To differentiate from other methods in the class, a stochastic operator must bear the
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identifying pre-fix op in the function name to allow detection of the new operator.

The only required inputs for the stochastic operator should be the parent parameters,

the number of which is used to determine operator-technique compatibility.
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Chapter 4

Experiment

4.1 Test Problem: Halide

To demonstrate and analyze the power of PBSO techniques in program tuning, we

test the PBSO-extended OpenTuner on Halide problems which are concerned with

tuning image processing applications.

An image processing pipeline is a set of interconnected computations performed

on image data for image processing purposes such as smoothing, compression, and

pattern recognition. Such code is often hard to optimize by hand due to compli-

cated tradeoffs between redundant computation and data storage. The specific test

application we choose is the bilateral filter program, which smooths an image while

preserving major boundaries.

The application’s search domain is described as follows:

• 38 integers (PowerOfTwoParameters with range 1-23) which mostly determine

granularity of parallelization in the pipeline,

• 16 booleans which dictate whether parallelization or order storage is used, and

• 17 permutation-based variables which decide the order of executing specific

tasks, which includes:

– 8 small PermutationParameters (length=2,3,4)
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– 8 schedule ScheduleParameters (length=4,6,8)

– 1 big HalideComputeAtScheduleParameter (length=60)

4.2 Experiment Setup

We divide the search space into three subspaces by type: the integer subspace, the

boolean subspace, and permutation subspace. Tests are performed on these subspaces

individually as well as the on the whole space. When a subspace is tested, the value

of the rest of the domain is fixed to that from a randomly-generated feasible solution.

We divide the configuration search space for two purposes: first, for a search space

as large as a Halide program, searching on subspaces separately may be necessary;

second, the divided experiment help illustrate properties of different search spaces and

how different search techniques work on them, which potentially guide us to design

useful higher-level search strategies.

We use PSO, GA, DE, and a bandit technique incorporating the three PBSO

techniques. The population size is set to 30 for the three techniques. An additional

pure random search is introduced as a basis for comparison. Each tuning run last 2

hours or until the technique consistently fails to generate an improved configuration..

Each technique-subspace combination is run 10 times independently.

4.3 Results

Each time we run a search technique, we obtain a performance curve where every

point on the curve represents the target program’s execution time compiled with the

best configuration found by the technique up to that time. All performance curves are

therefore non-decreasing. Each technique is run 10 times, for all search subspaces.

We show the means overs the 10 runs in figure 4-1 and 4-2. We use these curves

to analyze the convergence behaviors of PBSO technique with respect to different

subspaces.

In addition, we use the last point of each mean performance curve to calculate
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integer permutation boolean mixed-type
PSO 28.6% 25.6% 32.5% 140.3%
DE 28.9% -17.0% 3.4% 77.1%
GA 103.5% 58.0% 31.5% 309.2%

bandit 146.4% 11.4% 5.7% 34.4%

Table 4.1: Program speedup introduced by different PBSO techniques, compared
with random search.

the final performance boost created by the corresponding PBSO method as compared

against the baseline random search method. Table 4.1 shows the performance boost

for each method-subspace as the percentage of execution speed (inverse of execution

time) increased from the baseline method to the PBSO method.

4.3.1 Final Performance

Table 4.1 shows that, to different degrees, most PBSO methods perform better than

random search. GA and PSO achieve significant speedup (great than 100%, i.e. half

execution time) on the complete problem space. GA achieves the best final perfor-

mance on the complete problem space (309.2%) as well as on the individual subspaces.

The bandit technique composed of PSO, DE, and GA works well on the integer sub-

space, but does not create significant performance boost on the complete problem

space. Both DE and the bandit technique appear to have trouble with boolean and

permutation spaces, showing little speedup (< 10%). This means that, the permu-

tation and boolean operators proposed in 3.4.4 and 3.4.3 may be problematic. In

particular, the composed crossover implementation is likely not sufficiently represent-

ing the concept of “difference” to realize the functionality of DE.

Next we inspect all mean performance curves to further inspect how different

search methods reach their final results.
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4.3.2 Convergence-based Observation

Full Tuning Space

By observing how the techniques perform on the full tuning problem space, as shown

in figure 4-1a, we find that:

• First, none of the techniques has fully converged by the end of the tuning.

This means that the search space has not been exhausted and that, given more

tuning time, all techniques are likely to improve further.

• Overtime, all PBSO techniques perform consistently better than the baseline

random search method. In addition, comparing the best performing methods,

GA and PSO, GA demonstrates more potential on further improvement at the

end of tuning with a sharper slope.

• The bandit technique does not reach the best performance achieved by its base

techniques, given the same amount of tuning time. This is understandable,

since as the ensemble technique has no prior knowledge on which technique

works the best and needs to spend more time on exploration. However, as with

GA, the slope at the end of the performance curve suggests large potential for

improvement.

Boolean

On the boolean subspace, as shown by 4-1b, all techniques stop improving after the

first 10 minutes. This is most likely because of the small size of the subspace has

been exhausted.

Permutation

From 4-1c we see that, on the permutation subspace, performances of PSO and GA

are similar to that on the full space, but their improvements happen earlier and more

drastically and both appear close to convergence. This demonstrates the usefulness
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(a) Search on the entire problem space (b) Search on the boolean subspace

(c) Search on the permutation subspace (d) Search on the integer subspace

Figure 4-1: Auto-tuning a Halide program with different search techniques.
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(a) Random search

(b) Particle Swarm Optimization (c) Differential Evolution

(d) Genetic Algorithm (e) Bandit technique incorporating PSO, DE, and GA

Figure 4-2: Auto-tuning a Halide program on different subspaces
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of the permutation operators. Unlike PSO and GA, DE turned out to behave almost

like random search. One explanation can be that, unlike PSO and GA, DE does

not directly use existing good solutions when generating new ones. It can also be

caused by the fact that the 3-input permutation operator can not reflect the concept

of “difference” which is essential to the performance of DE. The bandit technique does

not reach the best performance among its base techniques and has not converged in

the end, which indicates that the permutation subspace may still be to large for the

ensemble technique to search within the given time constraint.

Integer

The integer subspace is smaller than the permutation subspaces. As expected, con-

vergence is more obvious than permutation subspace or the full space overall. In

particular the bandit technique is able to converge and eventually reaches the best

performance among its base techniques (GA). This verifies that, when given enough

tuning time, the bandit technique is capable of utilizing all its base technique.

Method-independent Subspace Properties

To better understand how search space type affect tuning, we re-plot the performance

curves in groups of techniques, shown by figure 4-2.

The most important conclusion we can derive is that, tuning a subspace rather

than the full mixed-type problem space can speed up the initial tuning phase, regard-

less of what search method is chosen. This is suggests that subspace-based optimiza-

tion strategies may improve tuning efficiency.
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Chapter 5

Conclusions

In this thesis we introduce the family of population-based stochastic optimization

methods to domain-generic program auto-tuner OpenTuner that enhances its tun-

ing power on particular discrete problem spaces. The new functionalities are tested

on the real tuning problem Halide and our major findings are as follows:

• Overall GA achieves the best tuning performance on all parameter types in

concern, with a performance boost of up to 309.2% compared with random

search, and shows the strongest potential for further performance boost given

more tuning time.

• Auto-tuning can be accelerated by searching on subspaces of the problem do-

main instead of the complete search space.

• Given limited tuning time, a bandit technique may not be able to achieve the

best results can be possibly found by its constituent methods.

• Most proposed discrete-domain adaptations for PBSO methods, realized as

parameter-specifc stochastic operators, work well on the test problem; how-

ever, the composed crossover operators (P3.X and B3.X) can have trouble when

applied to DE.

In accordance with our findings, we recommend the following next-stops to im-

prove the PBSO functionality in OpenTuner:

39



Operator Re-design The results for DE on the permutation and boolean problem

domains suggests that the crossover-based interpretation of subtraction opera-

tion on the permutation space might not be sufficient for DE to work and need

to be re-designed.

Subspace search strategies The acceleration effect of subspace search suggests

that OpenTuner can benefit from incorporating configuration-level search strate-

gies that divides the full problem space into subspaces and focus on different

subspaces at different times.

Self-tuning OpenTuner’s bandit meta-technique makes it possible to run multiple

search techniques at the same time and automatically allow the good techniques

to stand out. However, the exploration comes at the price of spending extra

tuning time, and we should not completely reply on the meta-technique when it

comes to choosing and configuring the right search algorithm. More experiments

need to be done to determine reasonable default settings for specific search

techniques, as well as choices of default techniques in an bandit technique given

the tuning problem. For example, GA which appears to be more successful on

discrete optimization than other methods may be given a higher initial priority

in the ensemble technique it constitutes.
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